-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathunentanglePyramid.m
executable file
·112 lines (105 loc) · 3.45 KB
/
unentanglePyramid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
function [features, levels, indexes, gradsums] = unentanglePyramid(pyramid, ...
pcsz,conf)
if(~exist('conf','var'))
conf=struct();
end
global ds;
conf=overrideConf(ds.conf.params,conf);
% Converts a pyramid of hog features for an image to a single matrix.
%
% Author: [email protected] (Saurabh Singh).
%prSize = round(patchCanonicalSize(1) / pyramid.sbins) - 2;
%pcSize = round(patchCanonicalSize(2) / pyramid.sbins) - 2;
%[prSize, pcSize, pzSize, nExtra]=getCanonicalPatchHOGSize(ds.conf.params);
%prSize=pc
selFeatures = cell(length(pyramid.features), 1);
selGradsums = cell(length(pyramid.features), 1);
selFeaturesInds = cell(length(pyramid.features), 1);
selLevel = cell(length(pyramid.features), 1);
totalProcessed = 0;
if(numel(pyramid.features)==0)
features=[];
levels=[];
indexes=[];
gradsums=[];
return
end
%im=RGB2Lab(im);
if(numel(pcsz)<3)
pcsz(3)=size(pyramid.features{1},3);
end
if(numel(pcsz)<4)
pcsz(4)=0;
end
for i = 1 : length(pyramid.features)
[feats, indexes, selGradsums{i,1}] = getFeaturesForLevel(pyramid.features{i}, conf, pcsz(1), ...
pcsz(2),pcsz(3),pcsz(4),pyramid.gradimg{i});
selFeatures{i} = feats;
selFeaturesInds{i} = indexes;
numFeats = size(feats, 1);
selLevel{i} = ones(numFeats, 1) * i;
totalProcessed = totalProcessed + numFeats;
end
gradsums=cell2mat(selGradsums);
[features, levels, indexes] = appendAllTogether(totalProcessed, ...
selFeatures, selLevel, selFeaturesInds);
'featsize'
size(feats)
clear selFeatures;
if(dsbool(conf,'normbeforewhit'))
features=bsxfun(@rdivide,bsxfun(@minus,features,mean(features,2)),max(sqrt(var(features,1,2).*size(features,2)),.0000001));
end
if(dsbool(conf,'whitening'))
try
whit=dsload('.ds.whitenmat');
whiten=1;
catch
whiten=0;
end
if(whiten)
features=bsxfun(@minus,features,(dsload('.ds.datamean')))*(dsload('.ds.whitenmat')');
end
end
if(dsbool(conf,'normalizefeats'))
features=bsxfun(@rdivide,bsxfun(@minus,features,mean(features,2)),sqrt(var(features,1,2).*size(features,2)));
end
if(dsfield(conf,'contextfeats'))
disp('contextfeats');
dets=getImgDetections(conf.imid);
if(~isempty(dets))
dets=dets(ismember(dets(:,6),conf.contextfeats),:);
end
patsz=ds.conf.params.patchCanonicalSize;%allsz(resinds(k),:);
fsz=(patsz-2*ds.conf.params.sBins)/ds.conf.params.sBins;
%sz=size(ds.centers{c});
%sz=sz(1:2);
%idxpad=floor((sz-fsz)./2);
imgs=getimgs();
%pos=pyridx2pos(indexes,pyramid.canonicalScale,reshape(levels,[],1),...
% fsz(1),fsz(2),pyramid.sbins,[pyramid.canonicalSize.nrows pyramid.canonicalSize.ncols]);
pos=pyridx2pos(indexes,reshape(levels,[],1),fsz,pyramid);
pos=[pos.x1 pos.y1 pos.x2 pos.y2];
features=[features contextfeats(pos,dets,conf.contextfeats)];
end
end
function [newFeat, newLev, newInds] = appendAllTogether(totalProcessed, ...
features, levels, indexes)
newFeat = zeros(totalProcessed, size(features{1}, 2));
newLev = zeros(totalProcessed, 1);
newInds = zeros(totalProcessed, 2);
featInd = 1;
for i = 1 : length(features)
if isempty(features{i})
continue;
end
startInd = featInd;
endInd = startInd + size(features{i}, 1) - 1;
newFeat(startInd:endInd, :) = features{i};
features{i} = [];
newLev(startInd:endInd) = levels{i};
levels{i} = [];
newInds(startInd:endInd, :) = indexes{i};
indexes{i} = [];
featInd = endInd + 1;
end
end