-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsampleRandomPatchesbb.m
executable file
·174 lines (163 loc) · 5.84 KB
/
sampleRandomPatchesbb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
%v1 by Saurabh Singh
%Edit: Carl Doersch (cdoersch at cs dot cmu dot edu).
function [patches, patFeats, probabilities] = sampleRandomPatches(pos,samplelimit,conf)
if(~exist('conf','var'))
conf=struct();
end
global ds;
params=ds.conf.params;
%data = pos;
%pos = pos.annotation;
rand('seed',1000*pos);
I2 = im2double(getimg(ds,pos));%imread([ds.conf.gbz{ds.conf.currimset}.cutoutdir ds.imgs(pos).fullpath]));
if(dsfield(conf,'detsforclass'))
annot=getannot(pos);
bbs=[annot.x1 annot.y1 annot.x2 annot.y2];
classes=[annot.label];
occl=annot.occluded;
difficult=annot.difficult;
boxid=annot.boxid;
bbminsize=[bbs(:,4)-bbs(:,2)+1,bbs(:,3)-bbs(:,1)+1];
valid=(~occl & c(ismember(classes,conf.detsforclass)) & ~difficult & all(bsxfun(@ge,bbminsize,ds.conf.params.patchCanonicalSize*1.5),2));
bbs(~valid,:)=[];
boxid(~valid)=[];
bbs=[bbs,repmat([-Inf,-Inf,pos,0],size(bbs,1),1),boxid];
else
bbs=[1,1,size(I2,2),size(I2,1),-Inf,-Inf,pos,0,1];
bbminsize=[bbs(:,4)-bbs(:,2)+1,bbs(:,3)-bbs(:,1)+1];
valid=(all(bsxfun(@ge,bbminsize,ds.conf.params.patchCanonicalSize*1.5),2));
bbs(~valid,:)=[];
end
patchesall={};
patFeatsall={}
probabilitiesall={}
for(bbidx=1:size(bbs,1))
I=I2(bbs(bbidx,2):bbs(bbidx,4),bbs(bbidx,1):bbs(bbidx,3),:);
if(dsfield(params,'imageCanonicalSize'))
[IS, scale] = convertToCanonicalSize(I, params.imageCanonicalSize);
else
IS=I;
scale=1;
end
[rows, cols, unused] = size(IS);
IG = getGradientImage(IS);
pyramid = constructFeaturePyramidForImg(I, params);
conf.imid=pos;
pcs=round(ds.conf.params.patchCanonicalSize/ds.conf.params.sBins)-2;
[features, levels, indexes] = unentanglePyramid(pyramid, ...
pcs,conf);
%params.patchCanonicalSize);
selLevels = 1 : params.scaleIntervals/2 : length(pyramid.scales);
levelScales = pyramid.scales(selLevels);
numLevels = length(selLevels);
patches = [];
patFeats = [];
probabilities = [];
basenperlev=pyramid.features{selLevels(end)};
basenperlev=(basenperlev(1)-pcs(1)+1)*(basenperlev(2)-pcs(2)+1);
for i = 1 : numLevels
levPatSize = floor(params.patchCanonicalSize .* levelScales(i));
if(dsbool(params,'sampleBig'))
numLevPat=floor(basenperlev/2);
else
numLevPat = floor((rows / levPatSize(1)) * ...
(cols / levPatSize(2))*8);
end
%disp([num2str(levelScales(i)) '->' num2str(numLevPat)]);
levelPatInds = find(levels == selLevels(i));
if numLevPat <= 0
continue;
end
IGS = IG;
pDist = getProbDistribution(IGS, levPatSize);
pDist1d = pDist(:);
randNums = getRandForPdf(pDist1d, numLevPat);
probs = pDist1d(randNums);
[IY, IX] = ind2sub(size(IGS), randNums);
IY = ceil(IY ./ (levelScales(i) * params.sBins));
IX = ceil(IX ./ (levelScales(i) * params.sBins));
[nrows, ncols, unused] = size(pyramid.features{selLevels(i)});
IY = IY - floor(pcs(1) / 2);
IX = IX - floor(pcs(2) / 2);
xyToSel = IY>0 & IY<=nrows-pcs(1)+1 & IX>0 & IX<=ncols-pcs(2)+1;
IY = IY(xyToSel);
IX = IX(xyToSel);
probs = probs(xyToSel);
inds = sub2ind([nrows-pcs(1)+1 ncols-pcs(2)+1], IY, IX);
[inds, m, unused] = unique(inds);
probs = probs(m);
selectedPatInds = levelPatInds(inds,:);
fsz=(ds.conf.params.patchCanonicalSize-2*ds.conf.params.sBins)/ds.conf.params.sBins;
metadata = pyridx2pos(indexes(selectedPatInds,:),levels(selectedPatInds),fsz,pyramid)
%getMetadataForPositives(selectedPatInds, levels,...
% indexes, pcs(1), pcs(2), pyramid, pos);
feats = features(selectedPatInds, :);
if ~isempty(metadata)
patInds = cleanUpOverlappingPatches(metadata, ...
params.samplingOverlapThreshold);
metadata.x1=metadata.x1+bbs(bbidx,1)-1;
metadata.x2=metadata.x2+bbs(bbidx,1)-1;
metadata.y1=metadata.y1+bbs(bbidx,2)-1;
metadata.y2=metadata.y2+bbs(bbidx,2)-1;
if(any(metadata.y2<metadata.y1))
error('malformed patch');
end
n=size(metadata.x1);
metadata.boxid=repmat(bbs(bbidx,9),n,1);
metadata.flip=repmat(bbs(bbidx,8),n,1);
metadata=effstridx(metadata,patInds);
patches = [patches;[metadata.x1, metadata.y1, metadata.x2, metadata.y2, repmat([0 0],numel(metadata.x1),1), repmat(pos,numel(metadata.x1),1), metadata.flip, metadata.boxid]];
patFeats = [patFeats; feats(patInds, :)];
probabilities = [probabilities probs(patInds)'];
end
end
patchesall{bbidx,1}=patches;
patFeatsall{bbidx,1}=patFeats;
probabilitiesall{bbidx}=probabilities;
end
patches=structcell2mat(patchesall);
patFeats=structcell2mat(patFeatsall);
probabilities=structcell2mat(probabilitiesall);
if(exist('samplelimit','var'))
inds=randperm(size(patches,1));
inds=inds(1:min(numel(inds),samplelimit));
patches=patches(inds,:);
patFeats=patFeats(inds,:);
probabilities=probabilities(inds);
end
end
function patInds = cleanUpOverlappingPatches(patches, thresh)
patmat=[patches.x1 patches.y1 patches.x2 patches.y2 rand(size(patches.y2))];
patInds=myNms(patmat,thresh);
end
function [centers, vertExt] = getCategoryCenters(data, category)
objects = data.annotation.object;
objNames = {objects.name};
[ismem, unused] = ismember(objNames, {category});
primLoc = find(ismem);
centers = zeros(length(primLoc), 2);
vertExt = zeros(length(primLoc), 1);
for j = 1 : length(primLoc)
vertExt(j) = getVerticalExtent(objects(primLoc(j)));
[centers(j, 1), centers(j, 2)] = getCenter(objects(primLoc(j)), data);
end
end
function ext = getVerticalExtent(obj)
[x,y] = getLMpolygon(obj.polygon);
ext = max(y) - min(y) + 1;
end
function [cx cy] = getCenter(obj, data)
bb = getBoundingBox(obj, data.annotation);
cx = (bb(1) + bb(3)) / 2;
cy = (bb(2) + bb(4)) / 2;
end
function I1 = getGradientImage(I)
[GX, GY] = gradient(I);
I1 = sum(abs(GX), 3) + sum(abs(GY), 3);
I1 = I1.^2;
end
function dist = getProbDistribution(I, pSize)
h = fspecial('gaussian', pSize, min(pSize)/3);
I = imfilter(I, h);
dist = I ./ sum(sum(I));
end