-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdisplaylikelihoodmask.m
102 lines (96 loc) · 3.76 KB
/
displaylikelihoodmask.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
% Written by Carl Doersch (cdoersch at cs dot cmu dot edu)
%
% Generates a display of hms and bghms which lets us visualize the clusters.
% The logic is very similar to the computation of blurthingprob, but it has
% some additional logic to make sure that the patch itself is displayed,
% convert the output map into pixel coordinates, crop out the box, and draw
% lines where the image ends.
function imwarp=displaylikelihoodmask(mydets,hms,bghms,predictedsctx,inimpyrlevs,conf)
try
global ds;
if(~exist('conf','var'))
conf=struct();
end
for(i=1:numel(hms))
if(isempty(hms{i}))
continue;
end
pos2=mydets(i,[1:4]);
if(mydets(i,8))
pos2([1 3])=-pos2([3 1])+size(getimg(mydets(i,7)),2)+1
end
pos2=pos2/2^((inimpyrlevs(i)-1-8)/8)/ds.conf.params.sBins-1;
pos2(1:2)=floor(pos2(1:2));
pos2(3:4)=ceil(pos2(3:4));
pos2=max(1,pos2);
pos2(3)=min(pos2(3),size(hms{i},2));
pos2(4)=min(pos2(4),size(hms{i},1));
badhmpos=hms{i}(pos2(2):pos2(4),pos2(1):pos2(3));
badpred=predictedsctx{i}(pos2(2):pos2(4),pos2(1):pos2(3));
badpred(badhmpos==0)=1;
predictedsctx{i}(pos2(2):pos2(4),pos2(1):pos2(3))=badpred;
badhmpos(badhmpos==0)=20;
hms{i}(hms{i}==0)=-20;
%sfigure(1);
%imagesc(hms{i});
hms{i}(pos2(2):pos2(4),pos2(1):pos2(3))=badhmpos;
%sfigure(2);
%imagesc(hms{i});
%keyboard
certaintymap{i}=exp(hms{i})./(exp(hms{i})+exp(bghms{i}));
predaccuracy=certaintymap{i};
onempredaccuracy=exp(bghms{i})./(exp(hms{i})+exp(bghms{i}));
tmp=exp(gaussfiltervalid(log(predaccuracy),predictedsctx{i}>0,2));
bgtmp=exp(gaussfiltervalid(log(onempredaccuracy),predictedsctx{i}>0,2));
pred=predictedsctx{i};
pred(pred==1)=.999999999;
onempred=1-pred;
pred=exp(gaussfiltervalid(log(pred),predictedsctx{i}>0,2));
onempred=exp(gaussfiltervalid(log(onempred),predictedsctx{i}>0,2));
bgblur=bgtmp./(tmp+bgtmp);
fgblur=tmp./(tmp+bgtmp);
bc=fgblur.*pred;
if(isfield(conf,'thresh')&&~isnan(conf.thresh(i)))
bc=bc-3.5*(conf.thresh(i)-.3);
end
blurcertainty{i}=min(1,max(0,fgblur.*pred*3.5-.5));%./(fgblur.*pred+bgblur.*onempred);
if(dsbool(conf,'returnmask'))
continue;
end
pyridx2=i;
currim=pyridx2;
im=im2double(getimg(mydets(pyridx2,[7:8])));
pos3=mydets(i,[1:4]);
if(mydets(i,8))
pos3([1 3])=-pos3([3 1])+size(im,2)+1
end
pos3=scaledets(pos3,3);
predsize=round(size(im(:,:,1))/2^((inimpyrlevs(pyridx2)-1-8)/8));
predsize2=floor(predsize/8)*8;
tmpsize=round(size(im(:,:,1)).*(predsize2./predsize));
%certmap=zeros(size(im(:,:,1)));
tmpmap=imresize(padarray(blurcertainty{currim},[1,1,0],'replicate'),tmpsize,'bicubic');
%certmap(1:size(tmpmap,1),1:size(tmpmap,2))=tmpmap;
certmap=tmpmap;
im=im(1:size(tmpmap,1),1:size(tmpmap,2),:);
im=bsxfun(@times,im,certmap)+bsxfun(@times,ones(size(im)),(1-certmap));
boxwidth=round((pos3(3)-pos3(1)+1)/75);
im=drawbox(im,pos3,[0 0 0],boxwidth);
pad=max(max(1-min(pos3([1 2])),pos3(4)-size(im,1)),pos3(3)-size(im,2));
im=padarraycolor(im,boxwidth,[0 0 0]);
pos3=pos3+boxwidth;
if(pad>0)
im=padarraycolor(im,pad,[1 1 1]);
pos3=pos3+pad;
end
%certmap=combineprobmaps(blurcertainty{i},1-blurcertainty{i}
imwarp{pyridx2}=im(pos3(2):pos3(4),pos3(1):pos3(3),:);%correspwarp(corresp,ds.conf.params.sBins,im,pyrs,pyridx2);
%certmap2=imresize(padarray(blurconf.*quantile(usemap,.3,3),[1,1,0]),ds.conf.params.sBins*2^((inimpyrlevel-1-8)/8),'bilinear');
%certmap2=certmap2./max(certmap2(:));
%certmap2=min(1,certmap2*2);
%imwarp{pyridx2}=bsxfun(@times,certmap2,imwarp{pyridx2})+bsxfun(@times,(1-certmap2),ones(size(imwarp{pyridx2})));
end
if(dsbool(conf,'returnmask'))
imwarp=blurcertainty;
end
catch ex,dsprinterr;end