-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdetectInIm.m
executable file
·44 lines (44 loc) · 1.69 KB
/
detectInIm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
% Run detection on an image. model is the standard detector format--
% i.e. it has a 'w' field where each row is a detector weight vector,
% a 'b' field with a bias that's subtracted from the score for each patch,
% and the 'id' field is an id for the detector. The second argument
% can be either an image id, a single number that will be interpeted
% as an index in .ds.imgs{ds.conf.currimset}, or it can be an RGB image,
% in which case all detections will be returned with image_id 0. conf can include:
% - 'flipall': flip the images to get more detections. Default false
% - 'thresh': detection threshold. Default -Inf
% - 'multperim': allow multiple detections per detector per image. Default false.
% If any of these fields aren't specified, they will be read from ds.conf.params
% before using the defaults.
% - 'imid': if the second argument is an image rather than an image id, set the
% output image_id to this value.
%
%
% Output is a set of detections in the standard format: one per row,
% each row is [x1 y1 x2 y2 score detector_id image_id flip boxid]. Note
% that in this release, boxid is never used.
function [dets,feats]=detectInIm(model,imid,conf)
if(~exist('conf','var'))
conf=struct();
end
if(~dsfield(conf,'thresh'))
conf.thresh=-Inf;
end
conf2=conf;
conf2.thresh=model.b+conf.thresh;
boxid=[];
[pos,dist,clustid,feats,flip,boxid]=bestInImbb(model.w,imid,conf2);
dist=dist-model.b(clustid);
if(isempty(dist))
dets=zeros(0,9);
else
if(numel(imid)>2)
if(isfield(conf,'imid'))
imid=conf.imid;
else
imid=0;
end
end
dets=[pos.x1,pos.y1,pos.x2,pos.y2,dist,model.id(clustid),repmat(imid,numel(dist),1),flip,boxid];
end
end