-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo-train-big-model-v1.sh
executable file
·100 lines (89 loc) · 5.01 KB
/
demo-train-big-model-v1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
###############################################################################################
#
# Script for training good word and phrase vector model using public corpora, version 1.0.
# The training time will be from several hours to about a day.
#
# Downloads about 8 billion words, makes phrases using two runs of word2phrase, trains
# a 500-dimensional vector model and evaluates it on word and phrase analogy tasks.
#
###############################################################################################
# This function will convert text to lowercase and remove special characters
normalize_text() {
awk '{print tolower($0);}' | sed -e "s/’/'/g" -e "s/′/'/g" -e "s/''/ /g" -e "s/'/ ' /g" -e "s/“/\"/g" -e "s/”/\"/g" \
-e 's/"/ " /g' -e 's/\./ \. /g' -e 's/<br \/>/ /g' -e 's/, / , /g' -e 's/(/ ( /g' -e 's/)/ ) /g' -e 's/\!/ \! /g' \
-e 's/\?/ \? /g' -e 's/\;/ /g' -e 's/\:/ /g' -e 's/-/ - /g' -e 's/=/ /g' -e 's/=/ /g' -e 's/*/ /g' -e 's/|/ /g' \
-e 's/«/ /g' | tr 0-9 " "
}
mkdir word2vec
cd word2vec
wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.en.shuffled.gz
wget http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz
gzip -d news.2012.en.shuffled.gz
gzip -d news.2013.en.shuffled.gz
normalize_text < news.2012.en.shuffled > data.txt
normalize_text < news.2013.en.shuffled >> data.txt
wget http://www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz
tar -xvf 1-billion-word-language-modeling-benchmark-r13output.tar.gz
for i in `ls 1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled`; do
normalize_text < 1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/$i >> data.txt
done
wget http://ebiquity.umbc.edu/redirect/to/resource/id/351/UMBC-webbase-corpus
tar -zxvf umbc_webbase_corpus.tar.gz webbase_all/*.txt
for i in `ls webbase_all`; do
normalize_text < webbase_all/$i >> data.txt
done
wget http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
bzip2 -c -d enwiki-latest-pages-articles.xml.bz2 | awk '{print tolower($0);}' | perl -e '
# Program to filter Wikipedia XML dumps to "clean" text consisting only of lowercase
# letters (a-z, converted from A-Z), and spaces (never consecutive)...
# All other characters are converted to spaces. Only text which normally appears.
# in the web browser is displayed. Tables are removed. Image captions are.
# preserved. Links are converted to normal text. Digits are spelled out.
# *** Modified to not spell digits or throw away non-ASCII characters ***
# Written by Matt Mahoney, June 10, 2006. This program is released to the public domain.
$/=">"; # input record separator
while (<>) {
if (/<text /) {$text=1;} # remove all but between <text> ... </text>
if (/#redirect/i) {$text=0;} # remove #REDIRECT
if ($text) {
# Remove any text not normally visible
if (/<\/text>/) {$text=0;}
s/<.*>//; # remove xml tags
s/&/&/g; # decode URL encoded chars
s/</</g;
s/>/>/g;
s/<ref[^<]*<\/ref>//g; # remove references <ref...> ... </ref>
s/<[^>]*>//g; # remove xhtml tags
s/\[http:[^] ]*/[/g; # remove normal url, preserve visible text
s/\|thumb//ig; # remove images links, preserve caption
s/\|left//ig;
s/\|right//ig;
s/\|\d+px//ig;
s/\[\[image:[^\[\]]*\|//ig;
s/\[\[category:([^|\]]*)[^]]*\]\]/[[$1]]/ig; # show categories without markup
s/\[\[[a-z\-]*:[^\]]*\]\]//g; # remove links to other languages
s/\[\[[^\|\]]*\|/[[/g; # remove wiki url, preserve visible text
s/{{[^}]*}}//g; # remove {{icons}} and {tables}
s/{[^}]*}//g;
s/\[//g; # remove [ and ]
s/\]//g;
s/&[^;]*;/ /g; # remove URL encoded chars
$_=" $_ ";
chop;
print $_;
}
}
' | normalize_text | awk '{if (NF>1) print;}' >> data.txt
wget http://word2vec.googlecode.com/svn/trunk/word2vec.c
wget http://word2vec.googlecode.com/svn/trunk/word2phrase.c
wget http://word2vec.googlecode.com/svn/trunk/compute-accuracy.c
wget http://word2vec.googlecode.com/svn/trunk/questions-words.txt
wget http://word2vec.googlecode.com/svn/trunk/questions-phrases.txt
gcc word2vec.c -o word2vec -lm -pthread -O3 -march=native -funroll-loops
gcc word2phrase.c -o word2phrase -lm -pthread -O3 -march=native -funroll-loops
gcc compute-accuracy.c -o compute-accuracy -lm -pthread -O3 -march=native -funroll-loops
./word2phrase -train data.txt -output data-phrase.txt -threshold 200 -debug 2
./word2phrase -train data-phrase.txt -output data-phrase2.txt -threshold 100 -debug 2
./word2vec -train data-phrase2.txt -output vectors.bin -cbow 1 -size 500 -window 10 -negative 10 -hs 0 -sample 1e-5 -threads 40 -binary 1 -iter 3 -min-count 10
./compute-accuracy vectors.bin 400000 < questions-words.txt # should get to almost 78% accuracy on 99.7% of questions
./compute-accuracy vectors.bin 1000000 < questions-phrases.txt # about 78% accuracy with 77% coverage