-
Notifications
You must be signed in to change notification settings - Fork 3
/
PriusObjectDetection_opencv.py
178 lines (144 loc) · 5.96 KB
/
PriusObjectDetection_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import multiprocessing
import os
import queue
import threading
import time
from datetime import timedelta
from multiprocessing import Pool
import cv2
import numpy as np
from PriusImage import PriusImage
from PriusPalette import PriusPalette
class PriusPredictor(object):
def __init__(self):
self.avgColor = []
self.pcaColors = []
self.confidenceVal = 0.5
self.threshold = 0.3
self.yolo_folder = './yolo-coco/'
self.hasPerfectMatch = False
self.hasAvgMatch = False
self.hasPcaMatch = False
self.hasShadeMatch = False
self.shadePredictedCount = 0
self.avgPredictedCount = 0
self.pcaPredictedCount = 0
self.totalPredictedCount = 0
self.perfectMatchCount = 0
self.shadePredictedCount = 0
self.perfectMatchCount = 0
self.avgPredictedCount = 0
self.pcaPredictedCount = 0
self.totalPredictedCount = 0
self.shadeSampleCount = 0
self.avgSampleCount = 0
self.pcaSampleCount = 0
self.totalSampleCount = 0
self.confidenceVal = 0.5
self.thresholdVal = 0.4
# initialize a list of colors to represent each possible class label
self.labelsPath = os.path.sep.join([self.yolo_folder, "coco.names"])
self.LABELS = open(self.labelsPath).read().strip().split("\n")
np.random.seed(42)
# derive the paths to the YOLO weights and model configuration
self.COLORS = np.random.randint(0, 255, size=(len(self.LABELS), 3), dtype="uint8")
self.weightsPath = os.path.sep.join([self.yolo_folder, "yolov3.weights"])
# load our YOLO object detector trained on COCO dataset (80 classes)
self.configPath = os.path.sep.join([self.yolo_folder, "yolov3.cfg"])
def write_prediction_results(self):
if self.hasShadeMatch is True:
self.shadePredictedCount = shadePredictedCount + 1
cv2.imwrite("shade_" + file, image)
if self.hasPcaMatch is True:
cv2.imwrite("pca_" + file, image)
self.pcaPredictedCount = pcaPredictedCount + 1
if self.hasAvgMatch is True:
cv2.imwrite("avg_" + file, image)
self.avgPredictedCount = avgPredictedCount + 1
if self.hasPerfectMatch is True:
cv2.imwrite("perfect_" + file, image)
self.perfectMatchCount = perfectMatchCount + 1
self.totalPredictedCount = totalPredictedCount + 1
def predict_prius(image, coords):
prius_image = PriusImage.from_image(
image[max(coords[1], 0):coords[1] + coords[3], max(coords[0], 0):coords[0] + coords[2]])
if prius_image.self.has_required_shades():
self.hasShadeMatch = True
self.hasAvgMatch = priusImage.self.has_avg_match()
self.hasPcaMatch = priusImage.self.has_pca_match()
self.hasPerfectMatch = priusImage.self.has_perfect_match()
text = "{}".format('Match')
cv2.putText(image, text, (x + 2, (y - h - 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
print(
"\n" + str(file) + "\n\t-> Required Palettes: " + str(shadePredictedCount) + " Average Color: " + str(
avgPredictedCount) + " PCA Colors: " + str(pcaPredictedCount) + " Perfect Match: " + str(
perfectMatchCount) + " Total: " + str(totalPredictedCount))
def darknet_dnn(self):
net = cv2.dnn.readNetFromDarknet(self.configPath, self.weightsPath)
return net
def detect_vehicle(self, image):
# image = meta_data['vehicle_image']
# image_path = meta_data['image_path']
image = cv2.imread(image)
# determine only the *output* layer names that we need from YOLO
(H, W) = image.shape[:2]
layer_names = net.getLayerNames()
# construct a blob from the input image and then perform a forward
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
outputs = net.forward(output_layers)
# show timing information on YOLO
end = time.time()
boxes = []
confidences = []
classIDs = [] # loop over each of the layer outputs
for output in outputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > self.confidenceVal:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, self.confidenceVal, self.thresholdVal)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
if classIDs[i] == 2:
try:
coords = ([x], [y], [w], [h])
predict_data = dict(color=color, image=image, coords=coords, image_path=image_path)
predict_prius(predict_data)
except Exception as e:
print(e)