forked from zeitlingerlab/he_johnston_nbt_2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
figure_s1_b_c_d.Rmd
356 lines (258 loc) · 14.4 KB
/
figure_s1_b_c_d.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
``` {r setup, echo=FALSE, message=FALSE, include=FALSE, error=FALSE}
library(xtable)
library(BSgenome.Dmelanogaster.UCSC.dm3)
library(GenomicRanges)
library(rtracklayer)
library(ggplot2)
library(plyr)
library(seqLogo)
library(knitcitations)
library(lattice)
# Output folder for this document
options(knitr.figure_dir = "figure_s1_b_c_d_output")
source("shared_code/knitr_common.r")
source("shared_code/exo_metapeak.r")
source("shared_code/granges_common.r")
source("shared_code/samples.r")
source("shared_code/ggplot_theme.r")
```
# Figure S1: Twist DNA shape and the TA EBOX motif
``` {r header_child, child="child_docs/header_child.Rmd"}
```
## Orientation
We will first orient the Twist CATATG motifs "towards" the side with the greater ChIP-nexus signal. As the motif is palindromic, we can simply assign a strand to the motif to give it a direction. We will define positive-strand motifs as those where the Twist signal is greatest to the right of the motif, and negative-strand motifs will be those where the Twist signal is greatest to the left.
We'll start with the top 200 **`CATATG`** motifs. After assigning a direction to each motif, we can plot a ChIP-nexus metapeak to verify that we have properly oriented the motifs toward the direction of highest Twist signal:
``` {r orient_twi_motifs, include=FALSE}
twi_sample <- get_sample_cl("dmel_embryo_twi_chipnexus_01")
twi_ta.gr <- cache("twi_ta.gr.rds", function() {
twi_ta.gr <- filter_chrs(vmatchPattern("CATATG", Dmelanogaster, max.mismatch=0, fixed=TRUE))
twi_ta.gr <- twi_ta.gr[strand(twi_ta.gr) == "+"]
twi_ta.gr[width(resize(twi_ta.gr, width=100, fix="center")) == 100]
})
all.gr <- cache("all.gr.rds", function() {
left_pos_region <- resize(shift(twi_ta.gr, -8), width=13, fix="center")
right_pos_region <- resize(shift(twi_ta.gr, 9), width=13, fix="center")
left_neg_region <- resize(shift(twi_ta.gr, -3), width=13, fix="center")
right_neg_region <- resize(shift(twi_ta.gr, 16), width=13, fix="center")
mcols(twi_ta.gr)$left_signal <- regionSums(left_pos_region, twi_sample$pos) + regionSums(left_neg_region, twi_sample$neg)
mcols(twi_ta.gr)$right_signal <- regionSums(right_pos_region, twi_sample$pos) + regionSums(right_neg_region, twi_sample$neg)
strand(twi_ta.gr) <- with(mcols(twi_ta.gr), ifelse(left_signal > right_signal, "-", "+"))
twi_ta.gr
})
top.gr <- all.gr[order(mcols(all.gr)$left_signal + mcols(all.gr)$right_signal, decreasing=TRUE)][1:200]
```
``` {r top_motifs_metapeak, message=FALSE, fig.cap="", fig.width=7, fig.height=4}
top.reads <- cache("top.reads.rds", function() {
exo_metapeak(top.gr, twi_sample, upstream=40, downstream=45, sample_name="Max", smooth=3)
})
motif.box <- data.frame(xmin=0,
xmax=5,
ymin=-Inf,
ymax=Inf)
g <- ggplot(top.reads, aes(x=tss_distance, y=reads, color=strand)) +
geom_line(size=1.1) +
geom_hline(yintercept=0, color="black") +
scale_colour_manual(name="Strand", values=c("+"="red", "-"="darkblue")) +
geom_rect(show_guide=FALSE, inherit.aes=FALSE, data=motif.box,
aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
alpha=0.25, fill="gray50") +
labs(x="Distance to motif edge",
y="Average ChIP-nexus Reads",
title="Twist ChIP-nexus\nTop 200 TA motifs oriented toward highest Twist signal") +
scale_y_continuous(limits=c(0, max(top.reads$reads)),
expand=c(0, 0)) +
scale_x_continuous(labels=c(-40, -20, 0, 0, 20, 40),
breaks=c(-40, -20, 0, 5, 25, 45), limits=c(-40, 45)) +
theme_manuscript(12)
g
```
## Base composition adjacent to Twi-bound TA motifs
Now that the top motifs are oriented towards greater Twist binding, we can look at the the base composition around these motifs:
``` {r base_composition_data, include=FALSE}
top.bases <- cache("top.bases.rds", function() {
base_frequencies(top.gr, upstream=16, downstream=16+6)
})
```
``` {r base_composition_plot, fig.cap="", fig.width=7, fig.height=4}
g.bases <- ggplot(top.bases, aes(x=tss_distance, y=frequency, color=base)) +
geom_line() +
scale_colour_manual("Base", values=c("G"="#FDA429", "A"="#009933", "T"="#FC291C", "C"="#103FFB")) +
labs(x="Distance to motif edge",
y="Base frequency",
title="Base frequency around motif") +
scale_x_continuous(labels=c(-15, -10, -5, 0, 0, 5, 10, 15),
breaks=c(-15, -10, -5, 0, 5, 10, 15, 20)) +
scale_y_continuous(expand=c(0, 0)) +
theme_manuscript(12)
g.bases
```
Statistical tests (single base):
``` {r base_composition_stat_tests, results="asis"}
top.bases$count <- top.bases$frequency * 200
chisq_test_at_base_position <- function(position, bases.df, background_gc=0.43) {
a.count <- subset(bases.df, tss_distance == position & base == "A")$count
t.count <- subset(bases.df, tss_distance == position & base == "T")$count
g.count <- subset(bases.df, tss_distance == position & base == "G")$count
c.count <- subset(bases.df, tss_distance == position & base == "C")$count
a.exp <- 200 * (1 - background_gc) / 2
t.exp <- a.exp
g.exp <- 200 * background_gc / 2
c.exp <- g.exp
m <- matrix(c(a.count, t.count, g.count, c.count, a.exp, t.exp, g.exp, c.exp), byrow=TRUE, nrow=2)
chisq.test(m)$p.value
}
bases.pv <- data.frame(position=unique(sort(top.bases$tss_distance)),
pvalue=sapply(unique(sort(top.bases$tss_distance)), chisq_test_at_base_position, top.bases))
bases.pv$neg_log_pv <- -log10(bases.pv$pvalue)
html_table(bases.pv)
```
``` {r base_composition_stat_test_plot, fig.cap="", fig.width=7, fig.height=4}
bases.pv <- subset(bases.pv, ! position %in% c(0:5))
g.pv <- ggplot(bases.pv, aes(x=position, y=-log10(pvalue))) +
geom_bar(stat="identity") +
geom_hline(yintercept=-log10(0.01), color="gray50", linetype="dotted") +
labs(x="Distance to motif edge",
y="-log10 pvalue",
title="Chi-squared test for base distribution") +
theme_bw() +
scale_x_continuous(labels=c(-15, -10, -5, 0, 0, 5, 10, 15),
breaks=c(-15, -10, -5, 0, 5, 10, 15, 20)) +
theme(panel.grid.minor=element_blank(), panel.grid.major=element_blank())
g.pv
```
Statistical tests (sliding 5bp window):
``` {r base_composition_sliding_stat_tests, results="asis"}
chisq_test_at_base_positions <- function(middle_pos, bases.df, flank=2, background_gc=0.43) {
positions <- (middle_pos - flank):(middle_pos + flank)
total_count <- 200 * length(positions)
a.count <- sum(subset(bases.df, tss_distance %in% positions & base == "A")$count)
t.count <- sum(subset(bases.df, tss_distance %in% positions & base == "T")$count)
g.count <- sum(subset(bases.df, tss_distance %in% positions & base == "G")$count)
c.count <- sum(subset(bases.df, tss_distance %in% positions & base == "C")$count)
a.exp <- total_count * (1 - background_gc) / 2
t.exp <- a.exp
g.exp <- total_count * background_gc / 2
c.exp <- g.exp
m <- matrix(c(a.count, t.count, g.count, c.count, a.exp, t.exp, g.exp, c.exp), byrow=TRUE, nrow=2)
chisq.test(m)$p.value
}
sliding_starts <- min(top.bases$tss_distance) + 2
sliding_stops <- max(top.bases$tss_distance) - 2
bases.pv2 <- data.frame(center=sliding_starts:sliding_stops,
pvalue=sapply(sliding_starts:sliding_stops, chisq_test_at_base_positions, top.bases))
bases.pv2$neg_log_pv <- -log10(bases.pv2$pvalue)
html_table(bases.pv2)
```
``` {r base_composition_stat_test_sliding_plot, fig.cap="", fig.width=7, fig.height=4}
bases.pv2 <- subset(bases.pv2, ! center %in% c(-2:7))
g.pv2 <- ggplot(bases.pv2, aes(x=center, y=-log10(pvalue))) +
geom_bar(stat="identity") +
geom_hline(yintercept=-log10(0.01), color="gray50", linetype="dotted") +
labs(x="Distance to motif edge",
y="-log10 pvalue",
title="Chi-squared test for base distribution (5-bp sliding windows)") +
theme_bw() +
scale_x_continuous(labels=c(-15, -10, -5, 0, 0, 5, 10, 15),
breaks=c(-15, -10, -5, 0, 5, 10, 15, 20)) +
theme(panel.grid.minor=element_blank(), panel.grid.major=element_blank())
g.pv2
```
## DNA shape
A previous study found that DNA shape can influence the binding specificity of bHLH transcription factors `r citep("10.1016/j.celrep.2013.03.014")`. It is possible that Max, like other bHLH transcription factors, is sensitive to DNA shape characteristics and the differences in base composition seen above are a reflection of this sensitivity.
To investigate this possibility, we first need to obtain genome-wide DNA shape information. A recent paper from `r citet("10.1093/nar/gkt437")` provides a web service called [DNAShape](http://rohslab.cmb.usc.edu/DNAshape/) that calculates DNA shape parameters given an input sequence. Genome-wide data for *Drosophila melanogaster* was constructed by obtaining DNA minor groove width and propeller twist values for all possible 5-mers and then mapping those values to the genome sequence.
Using this data, we can examine these two DNA shape parameters around the Max binding motifs:
``` {r get_dna_shape_data, include=FALSE}
minor_groove.cov <- data_path("dna_shape/minor_groove_width.bw")
prop_twist.cov <- data_path("dna_shape/propeller_twist.bw")
mg.reads <- cache("mg.reads.rds", function() {
reads.mg <- standard_metapeak(top.gr, minor_groove.cov, upstream=25, downstream=31, sample_name="Minor Groove Width")
})
pt.reads <- cache("pt.reads.rds", function() {
standard_metapeak(top.gr, prop_twist.cov, upstream=25, downstream=31, sample_name="Propeller Twist")
})
pt_oriented.matrix <- cache("pt_oriented.matrix.rds", function() {
standard_metapeak_matrix(top.gr, prop_twist.cov, upstream=25, downstream=31)
})
top_oriented.gr <- top.gr
strand(top.gr) <- "+"
pt.matrix <- cache("pt.matrix.rds", function() {
standard_metapeak_matrix(top.gr, prop_twist.cov, upstream=25, downstream=31)
})
exo.matrix <- cache("exo.matrix.rds", function() {
exo_metapeak_matrix(top.gr, twi_sample, upstream=25, downstream=31)
})
m.both <- exo.matrix$pos + exo.matrix$neg
m.order <- order(rowMeans(pt.matrix[, 32:37]) - rowMeans(pt.matrix[, 20:25]), decreasing=TRUE)
pt.matrix <- pt.matrix[m.order, ]
m.pos <- exo.matrix$pos[m.order, ]
m.neg <- exo.matrix$neg[m.order, ]
max.value <- quantile(rbind(m.pos, m.neg), 0.98)
m.pos <- normalize_matrix(m.pos, max.value)
m.neg <- normalize_matrix(m.neg, max.value)
pos.colors <- paste0(colorRampPalette(c("white", "#D62A31"))(33), "88")
neg.colors <- paste0(colorRampPalette(c("white", "#1E214A"))(33), "88")
```
``` {r dna_shape_plot, warning=FALSE, fig.cap="", fig.width=6, fig.height=4}
shape_plot <- function(reads.df) {
g.shape <- ggplot(reads.df, aes(x=tss_distance, y=reads)) +
geom_line() +
geom_rect(show_guide=FALSE, inherit.aes=FALSE, data=motif.box,
aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
alpha=0.25, fill="gray50") +
labs(x="Distance to motif edge",
y=reads.df$sample_name[1],
title=paste0("DNA shape around Twi-bound TA motifs\n", reads.df$sample_name[1])) +
scale_x_continuous(labels=c(-20, -15, -10, -5, 0, 0, 5, 10, 15, 20),
breaks=c(-20, -15, -10, -5, 0, 5, 10, 15, 20, 25), limits=c(-20, 25)) +
theme_manuscript(12)
g.shape
}
g.mg <- shape_plot(mg.reads)
g.pt <- shape_plot(pt.reads)
g.mg
g.pt
```
``` {r prop_twist_t_test, include=FALSE}
pt_max <- which.max(colSums(pt_oriented.matrix[, 28:56])) + 27 - (25 + 6)
values_right <- pt_oriented.matrix[, pt_max + (25 + 6)]
values_left <- pt_oriented.matrix[, 56 - (pt_max + (25 + 6)) + 1]
prop_twist_pv <- t.test(values_right, values_left, alternative="greater", paired=TRUE)$p.value
```
The maximum propeller twist value is found `r pt_max` bp downstream of the motif right edge. We can use a paired t-test to compare these values with the corresponding values `r pt_max` bp upstream of the motif's left edge:
This test yields a p-value of `r prop_twist_pv`.
# Heatmap
The sharp increase in the DNA "propeller twist" on the side of the motif with higher Twist binding is quite pronounced. We can visualize this association with a heatmap by ordering the (directionless) motifs by the difference in propeller twist between the left and right sides:
``` {r, dna_shape_heatmap_plot, fig.cap="", fig.width=9, fig.height=8}
mg.colors <- colorRampPalette(c("black", "white"))(33)
levelplot(t(pt.matrix[nrow(pt.matrix):1, ]), col.regions=mg.colors, useRaster=TRUE, main="Propeller Twist", ylab="", xlab="", cuts=32)
image(t(m.pos[nrow(m.pos):1,]), col=pos.colors, useRaster=TRUE, main="Twi ChIP-nexus")
image(t(m.neg[nrow(m.neg):1,]), col=neg.colors, useRaster=TRUE, add=TRUE)
levelplot(t(m.pos[nrow(m.pos):1, ]), col.regions=pos.colors, useRaster=TRUE, main="Twi positive strand", ylab="", xlab="", cuts=31)
levelplot(t(m.neg[nrow(m.neg):1, ]), col.regions=neg.colors, useRaster=TRUE, main="Twi negative strand", ylab="", xlab="", cuts=31)
```
The ChIP-nexus heatmap shows that when the propeller twist difference is most extreme (at the top and bottom of the heatmap), Max appears to prefer the side with higher (less negative) propeller twist.
``` {r save_pdfs, include=FALSE}
pdf(figure_path("twi_ta_motifs_oriented.pdf"), width=9, height=6)
print(g)
dev.off()
pdf(figure_path("twi_chipnexus_base_frequency.pdf"), width=9, height=6)
print(g.bases)
dev.off()
pdf(figure_path("dna_shape_metaprofile.pdf"), width=9, height=6)
print(g.mg)
print(g.pt)
dev.off()
pdf(figure_path("propeller_twist_heatmap.pdf"), width=5, height=9)
levelplot(t(pt.matrix[nrow(pt.matrix):1, ]), col.regions=mg.colors, useRaster=TRUE, main="Propeller Twist", ylab="", xlab="", cuts=32)
dev.off()
pdf(figure_path("twi_chipnexus_heatmap.pdf"), width=5, height=9)
image(t(m.pos[nrow(m.pos):1,]), col=pos.colors, useRaster=TRUE, main="Twi ChIP-nexus")
image(t(m.neg[nrow(m.neg):1,]), col=neg.colors, useRaster=TRUE, add=TRUE)
levelplot(t(m.pos[nrow(m.pos):1, ]), col.regions=pos.colors, useRaster=TRUE, main="Twi positive strand", ylab="", xlab="", cuts=31)
levelplot(t(m.neg[nrow(m.neg):1, ]), col.regions=neg.colors, useRaster=TRUE, main="Twi negative strand", ylab="", xlab="", cuts=31)
dev.off()
```
``` {r references_child, child="child_docs/references_child.Rmd", eval=FALSE}
```
``` {r session_info_child, child="child_docs/session_info_child.Rmd"}
```