forked from zeitlingerlab/he_johnston_nbt_2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
figure_2_d_e.Rmd
125 lines (92 loc) · 3.87 KB
/
figure_2_d_e.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
``` {r setup, echo=FALSE, message=FALSE, include=FALSE, error=FALSE}
library(xtable)
library(GenomicRanges)
library(BSgenome.Dmelanogaster.UCSC.dm3)
library(ggplot2)
library(reshape2)
library(colorspace)
library(dplyr)
# Output folder for this document
options(knitr.figure_dir = "figure_2_d_e_output")
source("shared_code/knitr_common.r")
source("shared_code/granges_common.r")
source("shared_code/samples.r")
source("shared_code/exo_metapeak.r")
source("shared_code/motif_specificity.r")
source("shared_code/ggplot_theme.r")
```
# Figure 2D and 2E: ChIP-seq vs ChIP-nexus motif specificity
``` {r header_child, child="child_docs/header_child.Rmd"}
```
## Overview
``` {r build_motif_coverage, include=FALSE}
dl.cov <- cache("dl.cov.rds", function() {
dl.motif <- "GGRWWTTCC"
dl.gr <- trim(filter_chrs(vmatchPattern(dl.motif, Dmelanogaster, max.mismatch=1, fixed=FALSE)))
strand(dl.gr) <- "+"
coverage(reduce(dl.gr))
})
twi.cov <- cache("twi.cov.rds", function() {
twi.motif <- c("CABATG")
twi.gr <- trim(filter_chrs(vmatchPattern(twi.motif, Dmelanogaster, max.mismatch=0, fixed=FALSE)))
strand(twi.gr) <- "+"
coverage(reduce(twi.gr))
})
```
``` {r common, include=FALSE}
knitr::opts_chunk$set(fig.cap="", fig.width=9, fig.height=7, dev=c("png", "pdf"))
peak_count <- 200
```
**Using top `r peak_count` peaks**
## Dorsal
``` {r dl_profiles}
dl_chipseq.bw <- data_path("bigwigs/dmel_embryo_dl_chipseq_01.bw")
dl_chipseq_peaks.gr <- trim(resize_around_summit(import_and_filter_macs("peak_calling/macs/dmel_embryo_dl_chipseq_01_summits.bed.gz"), 1))
dl_chipseq_peaks.gr <- dl_chipseq_peaks.gr[order(dl_chipseq_peaks.gr$score, decreasing=TRUE)][1:peak_count]
dl_chipnexus_peaks.gr <- trim(resize_around_summit(import_and_filter_macs("peak_calling/macs/dmel_embryo_dl_chipnexus_01_summits.bed.gz"), 1))
dl_chipnexus_peaks.gr <- dl_chipnexus_peaks.gr[order(dl_chipnexus_peaks.gr$score, decreasing=TRUE)][1:peak_count]
dl.data <- cache("dl.data.rds", function() {
reads_for_peaks(dl_chipseq_peaks.gr, dl_chipnexus_peaks.gr,
dl_chipseq.bw, dmel_embryo_dl_chipnexus_01.cl,
dl.cov, window_size=200)
})
dl.plots <- plots_for_factor("Dorsal", dl.data)
print(dl.plots$motifs)
```
``` {r dl_nearest_motif}
dl.nearest <- nearest_motif_plot("Dorsal", dl_chipseq_peaks.gr, dl_chipnexus_peaks.gr, dl.cov)
print(dl.nearest$plot)
```
``` {r dl_pvalues, results="asis"}
dl.df <- dl.nearest$data
dl_tests.df <- chisq_testing_results(dl.df)
dl_tests.df$pvalue <- as.character(dl_tests.df$pvalue)
html_table(dl_tests.df %>% as.data.frame)
```
## Twist
``` {r twi_profiles}
twi_chipseq.bw <- data_path("bigwigs/dmel_embryo_twi_chipseq_01.bw")
twi_chipseq_peaks.gr <- trim(resize_around_summit(import_and_filter_macs("peak_calling/macs/dmel_embryo_twi_chipseq_01_summits.bed.gz"), 1))
twi_chipseq_peaks.gr <- twi_chipseq_peaks.gr[order(twi_chipseq_peaks.gr$score, decreasing=TRUE)][1:peak_count]
twi_chipnexus_peaks.gr <- trim(resize_around_summit(import_and_filter_macs("peak_calling/macs/dmel_embryo_twi_chipnexus_01_summits.bed.gz"), 1))
twi_chipnexus_peaks.gr <- twi_chipnexus_peaks.gr[order(twi_chipnexus_peaks.gr$score, decreasing=TRUE)][1:peak_count]
twi.data <- cache("twi.data.rds", function() {
reads_for_peaks(twi_chipseq_peaks.gr, twi_chipnexus_peaks.gr,
twi_chipseq.bw, dmel_embryo_twi_chipnexus_01.cl,
twi.cov, window_size=200)
})
twi.plots <- plots_for_factor("Twist", twi.data)
print(twi.plots$motifs)
```
``` {r twi_nearest_motif}
twi.nearest <- nearest_motif_plot("Twist", twi_chipseq_peaks.gr, twi_chipnexus_peaks.gr, twi.cov)
print(twi.nearest$plot)
```
``` {r twi_pvalues, results="asis"}
twi.df <- twi.nearest$data
twi_tests.df <- chisq_testing_results(twi.df)
twi_tests.df$pvalue <- as.character(twi_tests.df$pvalue)
html_table(twi_tests.df %>% as.data.frame)
```
``` {r session_info_child, child="child_docs/session_info_child.Rmd"}
```