-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA02_sgs_scheme_details.tex
50 lines (40 loc) · 1.48 KB
/
A02_sgs_scheme_details.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
% Deardorff 1980 implementation in PALM
% Prognostic equation for SGS TKE
% \begin{equation} \label{eq:eprog}
% \frac{\partial e}{\partial t} =
% -u_j \frac{\partial e}{\partial x_j}
% - (\overline{u''_i u''_j})\frac{\partial u_i}{\partial x_j}
% + \frac{g_i}{\rho_0}\overline{u''_i \rho''}
% - \frac{\partial}{\partial x_j}[\overline{u_j''(e+\frac{p''}{\rho_0})}]
% - \varepsilon
% \end{equation}
% modified perturbation pressure:
% \begin{equation} \label{eq:pi}
% \pi^* = p^* + \frac{2}{3}\rho_0 e
% \end{equation}
% where $p^*$ is the perturbation pressure and the turbulent kinetic energy $e$ is
% \begin{equation} \label{eq:sadiff}
% \overline{u''_i Sa''} = -K_h \frac{\partial Sa}{\partial x_i}
% \end{equation}
% Eddy diffusivity of momentum
% \begin{equation} \label{eq:Km}
% K_m = c_m l \sqrt{e}
% \end{equation}
% Eddy diffusivity of heat and salt
% \begin{equation} \label{eq:Kh}
% K_h = (1+\frac{2l}{\Delta})K_m
% \end{equation}
% where
% \begin{equation} \label{eq:gridl}
% \Delta = \sqrt[3]{\Delta x \Delta y \Delta z}
% \end{equation}
%Turbulence closure by the gradient mean approximation
%\begin{equation} \label{eq:momdiff}
%\overline{u''_i u_j''} - \frac{2}{3}e \delta_{ij} = -K_m(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})
%\end{equation}
%\begin{equation} \label{eq:ptdiff}
%\overline{u''_i \theta''} = -K_h \frac{\partial \theta}{\partial x_i}
%\end{equation}
%\begin{equation} \label{eq:e}
%e = \frac{1}{2}\overline{u'_i u'_i}
%\end{equation}