-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnumber_of_tokens.py
57 lines (46 loc) · 1.72 KB
/
number_of_tokens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# script to get the total number of tokens in a dataset
from transformers import AutoTokenizer
from datasets import load_dataset
from torch.utils.data import IterableDataset
import argparse
from tqdm import tqdm
def get_total_tokens(dataset, tokenizer, data_column, nb_examples):
"""
Estimate the total number of tokens in the dataset.
"""
total_tokens = 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = example[data_column]
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_tokens
def get_total_tokens_from_iterable(dataset: IterableDataset):
"""
Get the total number of tokens in an IterableDataset.
"""
total_tokens = 0
for example in tqdm(dataset, desc="Counting tokens from IterableDataset"):
total_tokens += len(example["input_ids"])
return total_tokens
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tokenizer", type=str,
default="./starcoder_tokenizer_files")
parser.add_argument("--dataset", type=str,
default="nuprl/stack_dedup_lua_codegen")
args = parser.parse_args()
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer
)
print("Loading dataset")
dataset = load_dataset(
args.dataset,
split="train")
print("Tokenizing dataset")
data_column = "content"
total_tokens = get_total_tokens(
dataset, tokenizer, data_column, nb_examples=len(dataset))
print(f"Total number of tokens in dataset: {total_tokens}")