forked from aryann/difflib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
difflib.go
459 lines (422 loc) · 14 KB
/
difflib.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright 2012 Aryan Naraghi ([email protected])
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package difflib provides functionality for computing the difference
// between two sequences of strings.
package difflib
import (
"bytes"
"fmt"
"math"
"sort"
"strings"
)
// DeltaType describes the relationship of elements in two
// sequences. The following table provides a summary:
//
// Constant Code Meaning
// ---------- ------ ---------------------------------------
// Common " " The element occurs in both sequences.
// LeftOnly "-" The element is unique to sequence 1.
// RightOnly "+" The element is unique to sequence 2.
type DeltaType int
const (
Common DeltaType = iota
LeftOnly
RightOnly
)
// String returns a string representation for DeltaType.
func (t DeltaType) String() string {
switch t {
case Common:
return " "
case LeftOnly:
return "-"
case RightOnly:
return "+"
}
return "?"
}
type DiffRecord struct {
Payload string
Delta DeltaType
LineLeft int
LineRight int
}
// String returns a string representation of d. The string is a
// concatenation of the delta type and the payload.
func (d DiffRecord) String() string {
return fmt.Sprintf("%s %s", d.Delta, d.Payload)
}
// Diff returns the result of diffing the seq1 and seq2.
func Diff(seq1, seq2 []string) (diff []DiffRecord) {
// Trims any common elements at the heads and tails of the
// sequences before running the diff algorithm. This is an
// optimization.
start, end := numEqualStartAndEndElements(seq1, seq2)
for i, content := range seq1[:start] {
diff = append(diff, DiffRecord{content, Common, i, i})
}
diffRes := compute(seq1[start:len(seq1)-end], seq2[start:len(seq2)-end], start)
diff = append(diff, diffRes...)
for i, content := range seq1[len(seq1)-end:] {
diff = append(diff, DiffRecord{content, Common, len(seq1) - end + i, len(seq2) - end + i})
}
return
}
// HTMLDiff returns the results of diffing seq1 and seq2 as an HTML
// string. The resulting HTML is a table without the opening and
// closing table tags. Each table row represents a DiffRecord. The
// first and last columns contain the "line numbers" for seq1 and
// seq2, respectively (the function assumes that seq1 and seq2
// represent the lines in a file). The second and third columns
// contain the actual file contents.
//
// The cells that contain line numbers are decorated with the class
// "line-num". The cells that contain deleted elements are decorated
// with "deleted" and the cells that contain added elements are
// decorated with "added".
func HTMLDiff(seq1, seq2 []string) string {
buf := bytes.NewBufferString("")
i, j := 0, 0
for _, d := range Diff(seq1, seq2) {
buf.WriteString(`<tr><td class="line-num">`)
if d.Delta == Common || d.Delta == LeftOnly {
i++
fmt.Fprintf(buf, "%d</td><td", i)
if d.Delta == LeftOnly {
fmt.Fprint(buf, ` class="deleted"`)
}
fmt.Fprintf(buf, "><pre>%s</pre>", d.Payload)
} else {
buf.WriteString("</td><td>")
}
buf.WriteString("</td><td")
if d.Delta == Common || d.Delta == RightOnly {
j++
if d.Delta == RightOnly {
fmt.Fprint(buf, ` class="added"`)
}
fmt.Fprintf(buf, `><pre>%s</pre></td><td class="line-num">%d`, d.Payload, j)
} else {
buf.WriteString(`></td><td class="line-num">`)
}
buf.WriteString("</td></tr>\n")
}
return buf.String()
}
// PPDiff returns the results of diffing left and right as an pretty
// printed string. It will display all the lines of both the sequences
// that are being compared.
// When the left is different from right it will prepend a " - |" before
// the line.
// When the right is different from left it will prepend a " + |" before
// the line.
// When the right and left are equal it will prepend a " |" before
// the line.
func PPDiff(left, right []string) string {
var sb strings.Builder
recs := Diff(right, left)
for _, diff := range recs {
var mark string
switch diff.Delta {
case RightOnly:
mark = " + |"
case LeftOnly:
mark = " - |"
case Common:
mark = " |"
}
// make sure to have line numbers to make sure diff is truly unique
sb.WriteString(fmt.Sprintf("%3d,%3d%s%s\n", diff.LineLeft, diff.LineRight, mark, diff.Payload))
}
return sb.String()
}
// numEqualStartAndEndElements returns the number of elements a and b
// have in common from the beginning and from the end. If a and b are
// equal, start will equal len(a) == len(b) and end will be zero.
func numEqualStartAndEndElements(seq1, seq2 []string) (start, end int) {
for start < len(seq1) && start < len(seq2) && seq1[start] == seq2[start] {
start++
}
i, j := len(seq1)-1, len(seq2)-1
for i > start && j > start && seq1[i] == seq2[j] {
i--
j--
end++
}
return
}
// intMatrix returns a 2-dimensional slice of ints with the given
// number of rows and columns.
func intMatrix(rows, cols int) [][]int {
matrix := make([][]int, rows)
for i := 0; i < rows; i++ {
matrix[i] = make([]int, cols)
}
return matrix
}
// longestCommonSubsequenceMatrix returns the table that results from
// applying the dynamic programming approach for finding the longest
// common subsequence of seq1 and seq2.
func longestCommonSubsequenceMatrix(seq1, seq2 []string) [][]int {
matrix := intMatrix(len(seq1)+1, len(seq2)+1)
for i := 1; i < len(matrix); i++ {
for j := 1; j < len(matrix[i]); j++ {
if seq1[len(seq1)-i] == seq2[len(seq2)-j] {
matrix[i][j] = matrix[i-1][j-1] + 1
} else {
matrix[i][j] = int(math.Max(float64(matrix[i-1][j]),
float64(matrix[i][j-1])))
}
}
}
return matrix
}
// compute is the unexported helper for Diff that returns the results of
// diffing left and right.
func compute(seq1, seq2 []string, startLine int) (diff []DiffRecord) {
matrix := longestCommonSubsequenceMatrix(seq1, seq2)
i, j := len(seq1), len(seq2)
for i > 0 || j > 0 {
if i > 0 && matrix[i][j] == matrix[i-1][j] {
diff = append(diff, DiffRecord{seq1[len(seq1)-i], LeftOnly, startLine + len(seq1) - i, startLine + len(seq2) - j})
i--
} else if j > 0 && matrix[i][j] == matrix[i][j-1] {
diff = append(diff, DiffRecord{seq2[len(seq2)-j], RightOnly, startLine + len(seq1) - i, startLine + len(seq2) - j})
j--
} else if i > 0 && j > 0 {
diff = append(diff, DiffRecord{seq1[len(seq1)-i], Common, startLine + len(seq1) - i, startLine + len(seq2) - j})
i--
j--
}
}
return
}
// A pair is a pair of values tracked for both the x and y side of a diff.
// It is typically a pair of line indexes.
type pair struct{ x, y int }
// Diff returns an anchored diff of the two texts old and new
// in the “unified diff” format. If old and new are identical,
// Diff returns a nil slice (no output).
//
// Unix diff implementations typically look for a diff with
// the smallest number of lines inserted and removed,
// which can in the worst case take time quadratic in the
// number of lines in the texts. As a result, many implementations
// either can be made to run for a long time or cut off the search
// after a predetermined amount of work.
//
// In contrast, this implementation looks for a diff with the
// smallest number of “unique” lines inserted and removed,
// where unique means a line that appears just once in both old and new.
// We call this an “anchored diff” because the unique lines anchor
// the chosen matching regions. An anchored diff is usually clearer
// than a standard diff, because the algorithm does not try to
// reuse unrelated blank lines or closing braces.
// The algorithm also guarantees to run in O(n log n) time
// instead of the standard O(n²) time.
//
// Some systems call this approach a “patience diff,” named for
// the “patience sorting” algorithm, itself named for a solitaire card game.
// We avoid that name for two reasons. First, the name has been used
// for a few different variants of the algorithm, so it is imprecise.
// Second, the name is frequently interpreted as meaning that you have
// to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
// when in fact the algorithm is faster than the standard one.
func AnchoredDiff(seq1, seq2 []string) []DiffRecord {
diff := []DiffRecord{}
equalDiff := []DiffRecord{}
// Loop over matches to consider,
// expanding each match to include surrounding lines,
// and then printing diff chunks.
// To avoid setup/teardown cases outside the loop,
// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
// in the sequence of matches.
var (
done pair // printed up to x[:done.x] and y[:done.y]
chunk pair // start lines of current chunk
count pair // number of lines from each side in current chunk
ctext []struct{} // lines for current chunk
)
for _, m := range tgs(seq1, seq2) {
if m.x < done.x {
// Already handled scanning forward from earlier match.
continue
}
// Expand matching lines as far possible,
// establishing that x[start.x:end.x] == y[start.y:end.y].
// Note that on the first (or last) iteration we may (or definitely do)
// have an empty match: start.x==end.x and start.y==end.y.
start := m
for start.x > done.x && start.y > done.y && seq1[start.x-1] == seq2[start.y-1] {
start.x--
start.y--
}
end := m
for end.x < len(seq1) && end.y < len(seq2) && seq1[end.x] == seq2[end.y] {
equalDiff = append(equalDiff, DiffRecord{seq1[end.x], Common, end.x, end.y})
end.x++
end.y++
}
// If both sequences are identical, then add 'common' diff for all lines
if start.x == 0 && start.y == 0 && end.x == len(seq1) && end.y == len(seq2) {
diff = append(diff, equalDiff...)
}
// Emit the mismatched lines before start into this chunk.
// (No effect on first sentinel iteration, when start = {0,0}.)
for _, s := range seq1[done.x:start.x] {
diff = append(diff, DiffRecord{s, LeftOnly, chunk.x + count.x, chunk.y + count.y})
ctext = append(ctext, struct{}{})
count.x++
}
for _, s := range seq2[done.y:start.y] {
diff = append(diff, DiffRecord{s, RightOnly, chunk.x + count.x, chunk.y + count.y})
ctext = append(ctext, struct{}{})
count.y++
}
// If we're not at EOF and have too few common lines,
// the chunk includes all the common lines and continues.
const C = 30 // maximum number of context lines
if (end.x < len(seq1) || end.y < len(seq2)) &&
(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
for _, s := range seq1[start.x:end.x] {
ctext = append(ctext, struct{}{})
diff = append(diff, DiffRecord{s, Common, chunk.x + count.x, chunk.y + count.y})
count.x++
count.y++
}
done = end
continue
}
// End chunk with common lines for context.
if len(ctext) > 0 {
n := end.x - start.x
if n > C {
n = C
}
for _, s := range seq1[start.x : start.x+n] {
ctext = append(ctext, struct{}{})
diff = append(diff, DiffRecord{s, Common, chunk.x + count.x, chunk.y + count.y})
count.x++
count.y++
}
done = pair{start.x + n, start.y + n}
// Format and emit chunk.
// Convert line numbers to 1-indexed.
// Special case: empty file shows up as 0,0 not 1,0.
if count.x > 0 {
chunk.x++
}
if count.y > 0 {
chunk.y++
}
count.x = 0
count.y = 0
ctext = ctext[:0]
}
// If we reached EOF, we're done.
if end.x >= len(seq1) && end.y >= len(seq2) {
break
}
// Otherwise start a new chunk.
chunk = pair{end.x - C, end.y - C}
for _, s := range seq1[chunk.x:end.x] {
ctext = append(ctext, struct{}{})
diff = append(diff, DiffRecord{s, Common, chunk.x + count.x, chunk.y + count.y})
count.x++
count.y++
}
done = end
}
return diff
}
// tgs returns the pairs of indexes of the longest common subsequence
// of unique lines in x and y, where a unique line is one that appears
// once in x and once in y.
//
// The longest common subsequence algorithm is as described in
// Thomas G. Szymanski, “A Special Case of the Maximal Common
// Subsequence Problem,” Princeton TR #170 (January 1975),
// available at https://research.swtch.com/tgs170.pdf.
func tgs(x, y []string) []pair {
// Count the number of times each string appears in a and b.
// We only care about 0, 1, many, counted as 0, -1, -2
// for the x side and 0, -4, -8 for the y side.
// Using negative numbers now lets us distinguish positive line numbers later.
m := make(map[string]int)
for _, s := range x {
if c := m[s]; c > -2 {
m[s] = c - 1
}
}
for _, s := range y {
if c := m[s]; c > -8 {
m[s] = c - 4
}
}
// Now unique strings can be identified by m[s] = -1+-4.
//
// Gather the indexes of those strings in x and y, building:
// xi[i] = increasing indexes of unique strings in x.
// yi[i] = increasing indexes of unique strings in y.
// inv[i] = index j such that x[xi[i]] = y[yi[j]].
var xi, yi, inv []int
for i, s := range y {
if m[s] == -1+-4 {
m[s] = len(yi)
yi = append(yi, i)
}
}
for i, s := range x {
if j, ok := m[s]; ok && j >= 0 {
xi = append(xi, i)
inv = append(inv, j)
}
}
// Apply Algorithm A from Szymanski's paper.
// In those terms, A = J = inv and B = [0, n).
// We add sentinel pairs {0,0}, and {len(x),len(y)}
// to the returned sequence, to help the processing loop.
J := inv
n := len(xi)
T := make([]int, n)
L := make([]int, n)
for i := range T {
T[i] = n + 1
}
for i := 0; i < n; i++ {
k := sort.Search(n, func(k int) bool {
return T[k] >= J[i]
})
T[k] = J[i]
L[i] = k + 1
}
k := 0
for _, v := range L {
if k < v {
k = v
}
}
seq := make([]pair, 2+k)
seq[1+k] = pair{len(x), len(y)} // sentinel at end
lastj := n
for i := n - 1; i >= 0; i-- {
if L[i] == k && J[i] < lastj {
seq[k] = pair{xi[i], yi[J[i]]}
k--
}
}
seq[0] = pair{0, 0} // sentinel at start
return seq
}