-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathapp.py
104 lines (89 loc) · 4.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import argparse
import imageio
import numpy as np
import gradio as gr
from PIL import Image
from subprocess import PIPE, run
from demo.animate import MagicAnimate
from huggingface_hub import snapshot_download
snapshot_download(repo_id="runwayml/stable-diffusion-v1-5", local_dir="./stable-diffusion-v1-5")
snapshot_download(repo_id="stabilityai/sd-vae-ft-mse", local_dir="./sd-vae-ft-mse")
snapshot_download(repo_id="zcxu-eric/MagicAnimate", local_dir="./MagicAnimate")
animator = MagicAnimate()
def animate(reference_image, motion_sequence_state, seed, steps, guidance_scale):
return animator(reference_image, motion_sequence_state, seed, steps, guidance_scale)
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 800; font-size: 2rem; margin: 0rem">
MagicAnimate: Temporally Consistent Human Image Animation
</h1>
<br>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://showlab.github.io/magicanimate">Project page</a> |
<a href="https://github.com/magic-research/magic-animate"> GitHub </a> |
<a href="https://arxiv.org/abs/2311.16498"> arXiv </a>
</h2>
</div>
""")
animation = gr.Video(format="mp4", label="Animation Results", autoplay=True)
with gr.Row():
reference_image = gr.Image(label="Reference Image")
motion_sequence = gr.Video(format="mp4", label="Motion Sequence")
with gr.Column():
random_seed = gr.Textbox(label="Random seed", value=1, info="default: -1")
sampling_steps = gr.Textbox(label="Sampling steps", value=25, info="default: 25")
guidance_scale = gr.Textbox(label="Guidance scale", value=7.5, info="default: 7.5")
submit = gr.Button("Animate")
def read_video(video):
size = int(size)
reader = imageio.get_reader(video)
fps = reader.get_meta_data()['fps']
assert fps == 25.0, f'Expected video fps: 25, but {fps} fps found'
return video
def read_image(image, size=512):
return np.array(Image.fromarray(image).resize((size, size)))
# when user uploads a new video
motion_sequence.upload(
read_video,
motion_sequence,
motion_sequence
)
# when `first_frame` is updated
reference_image.upload(
read_image,
reference_image,
reference_image
)
# when the `submit` button is clicked
submit.click(
animate,
[reference_image, motion_sequence, random_seed, sampling_steps, guidance_scale],
animation
)
# Examples
gr.Markdown("## Examples")
gr.Examples(
examples=[
["inputs/applications/source_image/monalisa.png", "inputs/applications/driving/densepose/running.mp4"],
["inputs/applications/source_image/demo4.png", "inputs/applications/driving/densepose/demo4.mp4"],
["inputs/applications/source_image/0002.png", "inputs/applications/driving/densepose/demo4.mp4"],
["inputs/applications/source_image/dalle2.jpeg", "inputs/applications/driving/densepose/running2.mp4"],
["inputs/applications/source_image/dalle8.jpeg", "inputs/applications/driving/densepose/dancing2.mp4"],
["inputs/applications/source_image/multi1_source.png", "inputs/applications/driving/densepose/multi_dancing.mp4"],
],
inputs=[reference_image, motion_sequence],
outputs=animation
)
demo.launch(share=True)