-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunjobs_generate_statistics.m
79 lines (77 loc) · 3.07 KB
/
runjobs_generate_statistics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
function runjobs_generate_statistics( task, N, dims, shapes, runs, flags, maxsizes )
%RUNJOBS_GENERATE_STATISTICS is a wrapper function for
% ENSEMBLE_GET_STATISTICS as its n-th task of a task sequence.
%
% The TASKINDEX is used to select one dimension and one shape from the
% array DIMS and the cell list SHAPES by modulo and integer division,
% respectively.
%
% Arguments:
% TASK task index, positive integer. The generated data is
% stored in a file with a name including the job index.
% A string can be specified to add to the filename
% instead of the job index.
% N number of elements in the causet.
% DIMS vector of spacetime dimensions.
% SHAPES cell array of shape names or string with comma
% separated list of names.
% RUNS number of loop iterations.
%
% Optional arguments:
% MAXSIZES memory dimensions of the results, see
% ENSEMBLE_GET_STATISTICS.
%
% Copyright 2021, C. Minz. BSD 3-Clause License.
%% set start up parameter:
isSingleJob = false;
if ~isnumeric( task )
task_num = str2double( task );
if isnan( task_num )
isSingleJob = true;
jobname = task;
task = 1;
else
task = task_num;
end
end
if ~iscell( shapes )
shapes = strsplit( shapes, ',' );
end
%% convert taskindex to job parameters:
count_d = length( dims );
count_shape = length( shapes );
dshape = mod( task - 1, count_d * count_shape ) + 1;
% job index:
j = floor( ( task - 1 ) / ( count_d * count_shape ) ) + 1;
% char sequence as shape name, selected from the shapes array:
shape = char( shapes( floor( ( dshape - 1 ) / count_d ) + 1 ) );
% spacetime dimension, selected from the dimensions array:
d = dims( mod( dshape - 1, count_d ) + 1 );
%% initialize pseudo-random generator:
stream = RandStream( 'mlfg6331_64' );
stream.Substream = task;
RandStream.setGlobalStream( stream );
%% generate causal sets and count diamonds:
if nargin < 6
results = ensemble_get_statistics( N, d, shape, runs );
elseif nargin < 7
results = ensemble_get_statistics( N, d, shape, runs, flags );
else
results = ensemble_get_statistics( N, d, shape, runs, flags, maxsizes );
end
results.runs = runs;
results.N = N;
results.d = d;
results.shape = shape;
results.comptimestr = char( seconds( results.comptime ), 'hh:mm:ss' );
%% save to file:
if isSingleJob
filename = sprintf( 'data/N%dD%d%sJ%s.mat', N, d, shape, jobname );
else
filename = sprintf( 'data/N%dD%d%sJ%d.mat', N, d, shape, j );
end
save( filename, '-struct', 'results' );
info = whos( 'results' );
fprintf( 'Task %d has finished after %s. Results (%0.3f kiB) written to file ''%s''.\n', ...
task, results.comptimestr, info.bytes / 1024, filename );
end