forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variable_replace.py
112 lines (91 loc) · 3.81 KB
/
variable_replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
from contextlib import contextmanager
from tensorflow.python.ops import variable_scope
# sanity global state to ensure non recursive.
_is_variable_replacing = [False]
def in_variable_replace_scope():
return _is_variable_replacing[0]
@contextmanager
def variable_replace(replacements, no_new=True):
""" A context manager that replaces variables.
This is a context manager that replaces all calls to
get_variable with the variable in replacements.
This function does not support recursive application.
Args:
replacements: dict
dictionary mapping a variable to replace (the key), with
the variable one wants to replace this variable with (the value).
no_new: bool
raise an error if variables were created.
This is for sanity checking.
Raises:
ValueError: if a new variable or not all the replacements are used.
"""
# TODO(lmetz) This function is a bit scary, as it relies on monkey patching
# the call to get_variable. Ideally this can be done with variable_scope's
# custom_getter attribute, but when initially writing this that was not
# avalible.
replacements = {k: v for k, v in replacements.items() if not k == v}
init_vars = tf.trainable_variables()
old_get_variable = variable_scope.get_variable
old_tf_get_variable = tf.get_variable
names_replace = {}
has_replaced_names = []
tf.logging.vlog(2, "Trying to replace")
for k, v in replacements.items():
tf.logging.vlog(2, k.name + " >> " + v.name)
tf.logging.vlog(2, "===")
for k, v in replacements.items():
strip_name = k.name.replace("/read:0", "")
strip_name = strip_name.replace(":0", "")
names_replace[strip_name] = v
# TODO(lmetz) is there a cleaner way to do this?
def new_get_variable(name, *args, **kwargs):
#print "Monkeypatch get variable run with name:", name
n = tf.get_variable_scope().name + "/" + name
#print "Monkeypatch get variable run with name:", n
if n in names_replace:
has_replaced_names.append(n)
return names_replace[n]
else:
return old_get_variable(name, *args, **kwargs)
# perform the monkey patch
if _is_variable_replacing[0] == True:
raise ValueError("No recursive calling to variable replace allowed.")
variable_scope.get_variable = new_get_variable
tf.get_variable = new_get_variable
_is_variable_replacing[0] = True
yield
if set(has_replaced_names) != set(names_replace.keys()):
print "Didn't use all replacements"
print "replaced variables that are not requested??"
print "==="
for n in list(set(has_replaced_names) - set(names_replace.keys())):
print n
print "Missed replacing variables"
print "==="
for n in list(set(names_replace.keys()) - set(has_replaced_names)):
print n, "==>", names_replace[n].name
raise ValueError("Fix this -- see stderr")
# undo the monkey patch
tf.get_variable = old_tf_get_variable
variable_scope.get_variable = old_get_variable
_is_variable_replacing[0] = False
final_vars = tf.trainable_variables()
assert set(init_vars) == set(final_vars), "trainable variables changed"