forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_video.py
500 lines (438 loc) · 20.7 KB
/
vis_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Segmentation results evaluation and visualization for videos using attention.
"""
import math
import os
import time
import numpy as np
import tensorflow as tf
from feelvos import common
from feelvos import model
from feelvos.datasets import video_dataset
from feelvos.utils import embedding_utils
from feelvos.utils import eval_utils
from feelvos.utils import video_input_generator
slim = tf.contrib.slim
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('eval_interval_secs', 60 * 5,
'How often (in seconds) to run evaluation.')
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
flags.DEFINE_integer('vis_batch_size', 1,
'The number of images in each batch during evaluation.')
flags.DEFINE_string('vis_logdir', None, 'Where to write the event logs.')
flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')
flags.DEFINE_integer('output_stride', 8,
'The ratio of input to output spatial resolution.')
flags.DEFINE_string('dataset', 'davis_2016',
'Name of the segmentation dataset.')
flags.DEFINE_string('vis_split', 'val',
'Which split of the dataset used for visualizing results')
flags.DEFINE_string(
'dataset_dir',
'/cns/is-d/home/lcchen/data/pascal_voc_seg/example_sstables',
'Where the dataset resides.')
flags.DEFINE_integer('num_vis_examples', -1,
'Number of examples for visualization. If -1, use all '
'samples in the vis data.')
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_bool('save_segmentations', False, 'Whether to save the '
'segmentation masks as '
'png images. Might be slow '
'on cns.')
flags.DEFINE_bool('save_embeddings', False, 'Whether to save the embeddings as'
'pickle. Might be slow on cns.')
flags.DEFINE_bool('eval_once_and_quit', False,
'Whether to just run the eval a single time and quit '
'afterwards. Otherwise, the eval is run in a loop with '
'new checkpoints.')
flags.DEFINE_boolean('first_frame_finetuning', False,
'Whether to only sample the first frame for fine-tuning.')
# the folder where segmentations are saved.
_SEGMENTATION_SAVE_FOLDER = 'segmentation'
_EMBEDDINGS_SAVE_FOLDER = 'embeddings'
def _process_seq_data(segmentation_dir, embeddings_dir, seq_name,
predicted_labels, gt_labels, embeddings):
"""Calculates the sequence IoU and optionally save the segmentation masks.
Args:
segmentation_dir: Directory in which the segmentation results are stored.
embeddings_dir: Directory in which the embeddings are stored.
seq_name: String, the name of the sequence.
predicted_labels: Int64 np.array of shape [n_frames, height, width].
gt_labels: Ground truth labels, Int64 np.array of shape
[n_frames, height, width].
embeddings: Float32 np.array of embeddings of shape
[n_frames, decoder_height, decoder_width, embedding_dim], or None.
Returns:
The IoU for the sequence (float).
"""
sequence_dir = os.path.join(segmentation_dir, seq_name)
tf.gfile.MakeDirs(sequence_dir)
embeddings_seq_dir = os.path.join(embeddings_dir, seq_name)
tf.gfile.MakeDirs(embeddings_seq_dir)
label_set = np.unique(gt_labels[0])
ious = []
assert len(predicted_labels) == len(gt_labels)
if embeddings is not None:
assert len(predicted_labels) == len(embeddings)
for t, (predicted_label, gt_label) in enumerate(
zip(predicted_labels, gt_labels)):
if FLAGS.save_segmentations:
seg_filename = os.path.join(segmentation_dir, seq_name, '%05d.png' % t)
eval_utils.save_segmentation_with_colormap(seg_filename, predicted_label)
if FLAGS.save_embeddings:
embedding_filename = os.path.join(embeddings_dir, seq_name,
'%05d.npy' % t)
assert embeddings is not None
eval_utils.save_embeddings(embedding_filename, embeddings[t])
object_ious_t = eval_utils.calculate_multi_object_ious(
predicted_label, gt_label, label_set)
ious.append(object_ious_t)
# First and last frame are excluded in DAVIS eval.
seq_ious = np.mean(ious[1:-1], axis=0)
tf.logging.info('seq ious: %s %s', seq_name, seq_ious)
return seq_ious
def create_predictions(samples, reference_labels, first_frame_img,
model_options):
"""Predicts segmentation labels for each frame of the video.
Slower version than create_predictions_fast, but does support more options.
Args:
samples: Dictionary of input samples.
reference_labels: Int tensor of shape [1, height, width, 1].
first_frame_img: Float32 tensor of shape [height, width, 3].
model_options: An InternalModelOptions instance to configure models.
Returns:
predicted_labels: Int tensor of shape [time, height, width] of
predicted labels for each frame.
all_embeddings: Float32 tensor of shape
[time, height, width, embedding_dim], or None.
"""
def predict(args, imgs):
"""Predicts segmentation labels and softmax probabilities for each image.
Args:
args: A tuple of (predictions, softmax_probabilities), where predictions
is an int tensor of shape [1, h, w] and softmax_probabilities is a
float32 tensor of shape [1, h_decoder, w_decoder, n_objects].
imgs: Either a one-tuple of the image to predict labels for of shape
[h, w, 3], or pair of previous frame and current frame image.
Returns:
predictions: The predicted labels as int tensor of shape [1, h, w].
softmax_probabilities: The softmax probabilities of shape
[1, h_decoder, w_decoder, n_objects].
"""
if FLAGS.save_embeddings:
last_frame_predictions, last_softmax_probabilities, _ = args
else:
last_frame_predictions, last_softmax_probabilities = args
if FLAGS.also_attend_to_previous_frame or FLAGS.use_softmax_feedback:
ref_labels_to_use = tf.concat(
[reference_labels, last_frame_predictions[..., tf.newaxis]],
axis=0)
else:
ref_labels_to_use = reference_labels
predictions, softmax_probabilities = model.predict_labels(
tf.stack((first_frame_img,) + imgs),
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
embedding_dimension=FLAGS.embedding_dimension,
reference_labels=ref_labels_to_use,
k_nearest_neighbors=FLAGS.k_nearest_neighbors,
use_softmax_feedback=FLAGS.use_softmax_feedback,
initial_softmax_feedback=last_softmax_probabilities,
embedding_seg_feature_dimension=
FLAGS.embedding_seg_feature_dimension,
embedding_seg_n_layers=FLAGS.embedding_seg_n_layers,
embedding_seg_kernel_size=FLAGS.embedding_seg_kernel_size,
embedding_seg_atrous_rates=FLAGS.embedding_seg_atrous_rates,
also_return_softmax_probabilities=True,
num_frames_per_video=
(3 if FLAGS.also_attend_to_previous_frame or
FLAGS.use_softmax_feedback else 2),
normalize_nearest_neighbor_distances=
FLAGS.normalize_nearest_neighbor_distances,
also_attend_to_previous_frame=FLAGS.also_attend_to_previous_frame,
use_local_previous_frame_attention=
FLAGS.use_local_previous_frame_attention,
previous_frame_attention_window_size=
FLAGS.previous_frame_attention_window_size,
use_first_frame_matching=FLAGS.use_first_frame_matching
)
predictions = tf.cast(predictions[common.OUTPUT_TYPE], tf.int32)
if FLAGS.save_embeddings:
names = [n.name for n in tf.get_default_graph().as_graph_def().node]
embedding_names = [x for x in names if 'embeddings' in x]
# This will crash when multi-scale inference is used.
assert len(embedding_names) == 1, len(embedding_names)
embedding_name = embedding_names[0] + ':0'
embeddings = tf.get_default_graph().get_tensor_by_name(embedding_name)
return predictions, softmax_probabilities, embeddings
else:
return predictions, softmax_probabilities
init_labels = tf.squeeze(reference_labels, axis=-1)
init_softmax = embedding_utils.create_initial_softmax_from_labels(
reference_labels, reference_labels, common.parse_decoder_output_stride(),
reduce_labels=False)
if FLAGS.save_embeddings:
decoder_height = tf.shape(init_softmax)[1]
decoder_width = tf.shape(init_softmax)[2]
n_frames = (3 if FLAGS.also_attend_to_previous_frame
or FLAGS.use_softmax_feedback else 2)
embeddings_init = tf.zeros((n_frames, decoder_height, decoder_width,
FLAGS.embedding_dimension))
init = (init_labels, init_softmax, embeddings_init)
else:
init = (init_labels, init_softmax)
# Do not eval the first frame again but concat the first frame ground
# truth instead.
if FLAGS.also_attend_to_previous_frame or FLAGS.use_softmax_feedback:
elems = (samples[common.IMAGE][:-1], samples[common.IMAGE][1:])
else:
elems = (samples[common.IMAGE][1:],)
res = tf.scan(predict, elems,
initializer=init,
parallel_iterations=1,
swap_memory=True)
if FLAGS.save_embeddings:
predicted_labels, _, all_embeddings = res
first_frame_embeddings = all_embeddings[0, 0, tf.newaxis]
other_frame_embeddings = all_embeddings[:, -1]
all_embeddings = tf.concat(
[first_frame_embeddings, other_frame_embeddings], axis=0)
else:
predicted_labels, _ = res
all_embeddings = None
predicted_labels = tf.concat([reference_labels[..., 0],
tf.squeeze(predicted_labels, axis=1)],
axis=0)
return predicted_labels, all_embeddings
def create_predictions_fast(samples, reference_labels, first_frame_img,
model_options):
"""Predicts segmentation labels for each frame of the video.
Faster version than create_predictions, but does not support all options.
Args:
samples: Dictionary of input samples.
reference_labels: Int tensor of shape [1, height, width, 1].
first_frame_img: Float32 tensor of shape [height, width, 3].
model_options: An InternalModelOptions instance to configure models.
Returns:
predicted_labels: Int tensor of shape [time, height, width] of
predicted labels for each frame.
all_embeddings: Float32 tensor of shape
[time, height, width, embedding_dim], or None.
Raises:
ValueError: If FLAGS.save_embeddings is True, FLAGS.use_softmax_feedback is
False, or FLAGS.also_attend_to_previous_frame is False.
"""
if FLAGS.save_embeddings:
raise ValueError('save_embeddings does not work with '
'create_predictions_fast. Use the slower '
'create_predictions instead.')
if not FLAGS.use_softmax_feedback:
raise ValueError('use_softmax_feedback must be True for '
'create_predictions_fast. Use the slower '
'create_predictions instead.')
if not FLAGS.also_attend_to_previous_frame:
raise ValueError('also_attend_to_previous_frame must be True for '
'create_predictions_fast. Use the slower '
'create_predictions instead.')
# Extract embeddings for first frame and prepare initial predictions.
first_frame_embeddings = embedding_utils.get_embeddings(
first_frame_img[tf.newaxis], model_options, FLAGS.embedding_dimension)
init_labels = tf.squeeze(reference_labels, axis=-1)
init_softmax = embedding_utils.create_initial_softmax_from_labels(
reference_labels, reference_labels, common.parse_decoder_output_stride(),
reduce_labels=False)
init = (init_labels, init_softmax, first_frame_embeddings)
def predict(args, img):
"""Predicts segmentation labels and softmax probabilities for each image.
Args:
args: tuple of
(predictions, softmax_probabilities, last_frame_embeddings), where
predictions is an int tensor of shape [1, h, w],
softmax_probabilities is a float32 tensor of shape
[1, h_decoder, w_decoder, n_objects],
and last_frame_embeddings is a float32 tensor of shape
[h_decoder, w_decoder, embedding_dimension].
img: Image to predict labels for of shape [h, w, 3].
Returns:
predictions: The predicted labels as int tensor of shape [1, h, w].
softmax_probabilities: The softmax probabilities of shape
[1, h_decoder, w_decoder, n_objects].
"""
(last_frame_predictions, last_softmax_probabilities,
prev_frame_embeddings) = args
ref_labels_to_use = tf.concat(
[reference_labels, last_frame_predictions[..., tf.newaxis]],
axis=0)
predictions, softmax_probabilities, embeddings = model.predict_labels(
img[tf.newaxis],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
embedding_dimension=FLAGS.embedding_dimension,
reference_labels=ref_labels_to_use,
k_nearest_neighbors=FLAGS.k_nearest_neighbors,
use_softmax_feedback=FLAGS.use_softmax_feedback,
initial_softmax_feedback=last_softmax_probabilities,
embedding_seg_feature_dimension=
FLAGS.embedding_seg_feature_dimension,
embedding_seg_n_layers=FLAGS.embedding_seg_n_layers,
embedding_seg_kernel_size=FLAGS.embedding_seg_kernel_size,
embedding_seg_atrous_rates=FLAGS.embedding_seg_atrous_rates,
also_return_softmax_probabilities=True,
num_frames_per_video=1,
normalize_nearest_neighbor_distances=
FLAGS.normalize_nearest_neighbor_distances,
also_attend_to_previous_frame=FLAGS.also_attend_to_previous_frame,
use_local_previous_frame_attention=
FLAGS.use_local_previous_frame_attention,
previous_frame_attention_window_size=
FLAGS.previous_frame_attention_window_size,
use_first_frame_matching=FLAGS.use_first_frame_matching,
also_return_embeddings=True,
ref_embeddings=(first_frame_embeddings, prev_frame_embeddings)
)
predictions = tf.cast(predictions[common.OUTPUT_TYPE], tf.int32)
return predictions, softmax_probabilities, embeddings
# Do not eval the first frame again but concat the first frame ground
# truth instead.
# If you have a lot of GPU memory, you can try to set swap_memory=False,
# and/or parallel_iterations=2.
elems = samples[common.IMAGE][1:]
res = tf.scan(predict, elems,
initializer=init,
parallel_iterations=1,
swap_memory=True)
predicted_labels, _, _ = res
predicted_labels = tf.concat([reference_labels[..., 0],
tf.squeeze(predicted_labels, axis=1)],
axis=0)
return predicted_labels
def main(unused_argv):
if FLAGS.vis_batch_size != 1:
raise ValueError('Only batch size 1 is supported for now')
data_type = 'tf_sequence_example'
# Get dataset-dependent information.
dataset = video_dataset.get_dataset(
FLAGS.dataset,
FLAGS.vis_split,
dataset_dir=FLAGS.dataset_dir,
data_type=data_type)
# Prepare for visualization.
tf.gfile.MakeDirs(FLAGS.vis_logdir)
segmentation_dir = os.path.join(FLAGS.vis_logdir, _SEGMENTATION_SAVE_FOLDER)
tf.gfile.MakeDirs(segmentation_dir)
embeddings_dir = os.path.join(FLAGS.vis_logdir, _EMBEDDINGS_SAVE_FOLDER)
tf.gfile.MakeDirs(embeddings_dir)
num_vis_examples = (dataset.num_videos if (FLAGS.num_vis_examples < 0)
else FLAGS.num_vis_examples)
if FLAGS.first_frame_finetuning:
num_vis_examples = 1
tf.logging.info('Visualizing on %s set', FLAGS.vis_split)
g = tf.Graph()
with g.as_default():
# Without setting device to CPU we run out of memory.
with tf.device('cpu:0'):
samples = video_input_generator.get(
dataset,
None,
None,
FLAGS.vis_batch_size,
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
dataset_split=FLAGS.vis_split,
is_training=False,
model_variant=FLAGS.model_variant,
preprocess_image_and_label=False,
remap_labels_to_reference_frame=False)
samples[common.IMAGE] = tf.cast(samples[common.IMAGE], tf.float32)
samples[common.LABEL] = tf.cast(samples[common.LABEL], tf.int32)
first_frame_img = samples[common.IMAGE][0]
reference_labels = samples[common.LABEL][0, tf.newaxis]
gt_labels = tf.squeeze(samples[common.LABEL], axis=-1)
seq_name = samples[common.VIDEO_ID][0]
model_options = common.VideoModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes},
crop_size=None,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
all_embeddings = None
predicted_labels = create_predictions_fast(
samples, reference_labels, first_frame_img, model_options)
# If you need more options like saving embeddings, replace the call to
# create_predictions_fast with create_predictions.
tf.train.get_or_create_global_step()
saver = tf.train.Saver(slim.get_variables_to_restore())
sv = tf.train.Supervisor(graph=g,
logdir=FLAGS.vis_logdir,
init_op=tf.global_variables_initializer(),
summary_op=None,
summary_writer=None,
global_step=None,
saver=saver)
num_batches = int(
math.ceil(num_vis_examples / float(FLAGS.vis_batch_size)))
last_checkpoint = None
# Infinite loop to visualize the results when new checkpoint is created.
while True:
last_checkpoint = slim.evaluation.wait_for_new_checkpoint(
FLAGS.checkpoint_dir, last_checkpoint)
start = time.time()
tf.logging.info(
'Starting visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
tf.logging.info('Visualizing with model %s', last_checkpoint)
all_ious = []
with sv.managed_session(FLAGS.master,
start_standard_services=False) as sess:
sv.start_queue_runners(sess)
sv.saver.restore(sess, last_checkpoint)
for batch in range(num_batches):
ops = [predicted_labels, gt_labels, seq_name]
if FLAGS.save_embeddings:
ops.append(all_embeddings)
tf.logging.info('Visualizing batch %d / %d', batch + 1, num_batches)
res = sess.run(ops)
tf.logging.info('Forwarding done')
pred_labels_val, gt_labels_val, seq_name_val = res[:3]
if FLAGS.save_embeddings:
all_embeddings_val = res[3]
else:
all_embeddings_val = None
seq_ious = _process_seq_data(segmentation_dir, embeddings_dir,
seq_name_val, pred_labels_val,
gt_labels_val, all_embeddings_val)
all_ious.append(seq_ious)
all_ious = np.concatenate(all_ious, axis=0)
tf.logging.info('n_seqs %s, mIoU %f', all_ious.shape, all_ious.mean())
tf.logging.info(
'Finished visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
result_dir = FLAGS.vis_logdir + '/results/'
tf.gfile.MakeDirs(result_dir)
with tf.gfile.GFile(result_dir + seq_name_val + '.txt', 'w') as f:
f.write(str(all_ious))
if FLAGS.first_frame_finetuning or FLAGS.eval_once_and_quit:
break
time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
if __name__ == '__main__':
flags.mark_flag_as_required('checkpoint_dir')
flags.mark_flag_as_required('vis_logdir')
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()