-
Notifications
You must be signed in to change notification settings - Fork 196
/
2008-02-07-patrecog.diary
164 lines (152 loc) · 5.85 KB
/
2008-02-07-patrecog.diary
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
% Demos for pattern classification lecture
% 2008-02-07 Dan Ellis [email protected]
% Load data
load fmtO.txt
load fmtU.txt
load fmtA.txt
% Build 2-dimensional data set [F1, F2]
dat = [fmtO(:,[1 2]);fmtU(:,[1 2]);fmtA(:,[1 2])];
size(dat)
%ans =
% 150 2
% 50 examples of each
% Single gaussian example
% Since a Gaussian is defined by its mean and covariance,
% fitting a single Gaussian to a dataset is simply a matter of
% calculating the sample mean and covariance, and using the
% Gaussian they define
mu = mean(fmtU(:,[1 2]));
vu = cov(fmtU(:,[1 2]));
mo = mean(fmtO(:,[1 2]));
vo = cov(fmtO(:,[1 2]));
ma = mean(fmtA(:,[1 2]));
va = cov(fmtA(:,[1 2]));
% To plot the 1 sigma 'radius' of the Gaussian, do the inverse
% mapping from Euclidean space...
circ = [cos([0:20]'/10*pi),sin([0:20]'/10*pi)];
[u,s,v] = svd(inv(vo));
circo = v'*inv(sqrt(s))*circ';
% Plot on top of data scatter
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
hold on
plot(mo(1)+circo(1,:),mo(2)+circo(2,:),'b')
hold off
% Can also do the reverse i.e. map data points to space where Gauss is
% a unit circle
im = sqrt(s)*v;
mU = (im*fmtU(:,[1 2])')';
mO = (im*fmtO(:,[1 2])')';
mA = (im*fmtA(:,[1 2])')';
mmo = (im*mo')';
plot(mU(:,1),mU(:,2),'.r',mO(:,1),mO(:,2),'.b',mA(:,1),mA(:,2),'.g');
hold on
plot(mmo(1)+circ(:,1),mmo(2)+circ(:,2),'b')
% However, back to normal space
hold off
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
% Easier to use gmmplot (with a single gauss) to get circle
gmmplot(mu,vu,[],[1 2],1,'r')
gmmplot(ma,va,[],[1 2],1,'g')
gmmplot(mo,vo,[],[1 2],1,'b')
% Decision boundary is when Gaussians (scaled by priors) are equal
% Use gmmgridsamp to evaluate over a grid
[ggA,xx,yy] = gmmgridsamp(ma,va,1,[200 1100 600 1600],60);
[ggO,xx,yy] = gmmgridsamp(mo,vo,1,[200 1100 600 1600],60);
[ggU,xx,yy] = gmmgridsamp(mu,vu,1,[200 1100 600 1600],60);
hold on
contour(xx,yy,ggO-max(ggA,ggU),[0 0])
contour(xx,yy,ggA-max(ggO,ggU),[0 0])
contour(xx,yy,ggU-max(ggO,ggA),[0 0])
% Reasonable boundary, not particularly optimal for training data
% Add surfaces
caxis([0 100])
surf(xx,yy,ggU,0*ones(size(ggU)))
surf(xx,yy,ggO,50*ones(size(ggO)))
surf(xx,yy,ggA,90*ones(size(ggA)))
% Note: making covariances uniform and equal would turn this into linear decision boundaries
hold off
vv = [2000,0;0,2000];
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
gmmplot(mu,vv,[],[1 2],1,'r')
gmmplot(mo,vv,[],[1 2],1,'b')
gmmplot(ma,vv,[],[1 2],1,'g')
[ggU,xx,yy] = gmmgridsamp(mu,vv,1,[200 1100 600 1600],60);
[ggO,xx,yy] = gmmgridsamp(mo,vv,1,[200 1100 600 1600],60);
[ggA,xx,yy] = gmmgridsamp(ma,vv,1,[200 1100 600 1600],60);
hold on
contour(xx,yy,ggO-max(ggA,ggU),[0 0])
% Some numerical problems creeping in, but you get the picture
% Gaussian mixture example
% Can train one GMM on whole data set - a kind of unsupervised clustering
hold off;
[gmm,gmv,gmc]=gmmest(dat,3,[],[],50,1);
% Keep pressing return to step through iterations, see how Gaussians update...
%Iteration=1 Log data likelihood = -1947.0721 delta=8051.9279
%Iteration=2 Log data likelihood = -1889.733 delta=57.3391
%...
%Iteration=49 Log data likelihood = -1850.7996 delta=0.19012
%Iteration=50 Log data likelihood = -1850.5923 delta=0.20731
% Not terrible for our task!
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
gmmplot(gmm,gmv);
% But boundary between U and O is pretty chancy - probably diff if we do it again
[gmm,gmv,gmc]=gmmest(dat,3,[],[],50);
%Iteration=1 Log data likelihood = -1935.1267 delta=8063.8733
%Iteration=2 Log data likelihood = -1907.581 delta=27.5458
%...
%Iteration=49 Log data likelihood = -1862.8608 delta=0.0036941
%Iteration=50 Log data likelihood = -1862.8571 delta=0.0036349
hold off
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
gmmplot(gmm,gmv);
% Yuk!
% For our estimate of the bayesian classifier, train GMMs for each class
[gmmU,gmvU,gmcU]=gmmest(fmtU(:,[1 2]),3,[],[],50);
%Iteration=1 Log data likelihood = -569.3872 delta=9429.6128
%Iteration=2 Log data likelihood = -552.1006 delta=17.2866
%...
%Iteration=49 Log data likelihood = -547.4049 delta=0.0011051
%Iteration=50 Log data likelihood = -547.4039 delta=0.0010106
[gmmO,gmvO,gmcO]=gmmest(fmtO(:,[1 2]),3,[],[],50);
%Iteration=1 Log data likelihood = -570.195 delta=9428.805
%Iteration=2 Log data likelihood = -548.5755 delta=21.6195
%...
%Iteration=49 Log data likelihood = -525.7043 delta=2.9913e-09
%Iteration=50 Log data likelihood = -525.7043 delta=1.8032e-09
[gmmA,gmvA,gmcA]=gmmest(fmtA(:,[1 2]),3,[],[],50);
%Iteration=1 Log data likelihood = -626.5629 delta=9372.4371
%Iteration=2 Log data likelihood = -599.119 delta=27.4439
%...
%Iteration=49 Log data likelihood = -588.5126 delta=0.34033
%Iteration=50 Log data likelihood = -588.341 delta=0.17157
plot(fmtU(:,1),fmtU(:,2),'.r',fmtO(:,1),fmtO(:,2),'.b',fmtA(:,1),fmtA(:,2),'.g');
gmmplot(gmmU,gmvU,[],[1 2],1,'r');
gmmplot(gmmO,gmvO,[],[1 2],1,'b');
gmmplot(gmmA,gmvA,[],[1 2],1,'g');
% Sample surfaces
[gmsU,xx,yy] = gmmgridsamp(gmmU,gmvU,gmcU,[200 1100 600 1600],60);
[gmsO,xx,yy] = gmmgridsamp(gmmO,gmvO,gmcO,[200 1100 600 1600],60);
[gmsA,xx,yy] = gmmgridsamp(gmmA,gmvA,gmcA,[200 1100 600 1600],60);
% Decision boundaries
hold on
contour(xx,yy,gmsO-max(gmsA,gmsU),[0 0])
contour(xx,yy,gmsA-max(gmsO,gmsU),[0 0])
% Freaky!
% Add surfaces
caxis([0 100])
surf(xx,yy,gmsO)
surf(xx,yy,gmsA)
surf(xx,yy,gmsU)
% Note: integral under surfaces is 1 (modulo grid density)
[sum(sum(gmsU)),sum(sum(gmsO)),sum(sum(gmsA))]
%ans =
% 0.0039 0.0039 0.0038
% dx is 900/60 = 15 and dy = 1000/60 = 16.67 so integral is 1/(15*16.67)
1/(15*16.67)
%ans =
% 0.0040
% a little under
% Nice GMM demos using Netlab:
% (download from http://www.ncrg.aston.ac.uk/netlab/index.php)
addpath('netlab'); % or where ever you have installed it
demgmm1; % visualizing progression of EM re-estimation