-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
209 lines (177 loc) · 6.87 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import pickle
import random
from io import BytesIO
from pathlib import Path
from typing import Iterable, Callable, Mapping
from zipfile import ZipFile
import lmdb
import numpy as np
import torchvision
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets.folder import is_image_file, default_loader
import utils
def image_loader(path):
if Path(path).suffix == ".npy":
return np.load(path)
return default_loader(path)
def is_valid_image_file(path):
if Path(path).suffix == ".npy":
return True
return is_image_file(path)
def image_from_byte(data, filename=None):
if str(filename).endswith(".npy"):
return np.load(BytesIO(data))
return Image.open(data)
def pipeline(pipeline_description: Iterable) -> Callable:
transforms_list = []
for pd in pipeline_description:
transforms_list.append(utils.instantiate(torchvision.transforms, pd))
return torchvision.transforms.Compose(transforms_list)
class ImageDataset(Dataset):
def __init__(
self,
folders,
transform,
recursive=False,
return_image_path=False,
archive_type=None,
):
if archive_type is None:
archive_type = "files"
if isinstance(folders, (str, Path)):
root = Path(folders)
if root.suffix == ".zip":
archive_type = "zip"
elif (root / "data.mdb").exists() and (root / "lock.mdb").exists():
archive_type = "lmdb"
assert archive_type in [
"files",
"zip",
"lmdb",
], f"got invalid type: {archive_type}"
if archive_type == "files":
if isinstance(folders, (str, Path)):
folders = [folders]
folders = [Path(f) for f in folders]
for f in folders:
assert f.exists(), f"{f} not exist, can not build ImageDataset"
else:
folders = Path(folders)
assert folders.exists(), f"{folders} not exist, can not build ImageDataset"
self.folders = folders
self.archive_type = archive_type
self.recursive = recursive
self.return_image_path = return_image_path
self.files = self.list_files()
self.transform = transform if callable(transform) else pipeline(transform)
def __len__(self):
return len(self.files)
def __repr__(self):
attrs = ["archive_type", "folders", "return_image_path", "recursive"]
attr_str = "".join([f"\t{a}={getattr(self, a)}\n" for a in attrs])
return f"{self.__class__.__name__}(\n{attr_str})"
@staticmethod
def _open_lmdb(lmdb_path):
env = lmdb.open(
str(lmdb_path),
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not env:
raise IOError("Cannot open lmdb dataset", lmdb_path)
return env
def list_files(self):
if self.archive_type == "files":
return self.list_image_files(self.folders, recursive=self.recursive)
elif self.archive_type == "lmdb":
env = self._open_lmdb(self.folders)
with env.begin(write=False) as txn:
files = pickle.load(BytesIO(txn.get("filenames".encode("utf-8"))))
env.close()
return files
elif self.archive_type == "zip":
zf = ZipFile(self.folders)
files = [f for f in zf.namelist() if is_image_file(f)]
zf.close()
return files
else:
raise ValueError(f"invalid archive_type: {self.archive_type}")
@staticmethod
def list_image_files(folders, recursive=False):
pattern = "**/*" if recursive else "*"
image_files = []
for f in folders:
if not f.exists():
continue
files = [file for file in f.glob(pattern) if is_valid_image_file(file.name)]
image_files.extend(files)
return image_files
def load_router(self, p):
if self.archive_type == "files":
return image_loader(p)
elif self.archive_type == "zip":
# create the zipfile object at the first data iteration.
# to prevent un-pickle-able error when using ddp
if not hasattr(self, "_zipfile"):
self._zipfile = ZipFile(self.folders)
return image_from_byte(self._zipfile.open(p, "r"), p)
elif self.archive_type == "lmdb":
# create the environment object at the first data iteration.
# to prevent un-pickle-able error when using ddp
if not hasattr(self, "_txn"):
env = self._open_lmdb(self.folders)
self._txn = env.begin(write=False)
return image_from_byte(self._txn.get(p.encode("utf-8")), p)
else:
raise ValueError(f"invalid archive_type: {self.archive_type}")
def __getitem__(self, idx):
file_path = self.files[idx]
out = dict(image=self.transform(self.load_router(file_path)))
if self.return_image_path:
out["path"] = str(file_path)
return out
class UnpairedDataset(Dataset):
def __init__(
self, folders_a, folders_b, transform, recursive=False, return_image_path=False
):
if isinstance(transform, Mapping):
transform_a = transform["A"]
transform_b = transform["B"]
else:
transform_a = transform
transform_b = transform
self.dataset_a = ImageDataset(
folders_a, transform_a, recursive, return_image_path
)
self.dataset_b = ImageDataset(
folders_b, transform_b, recursive, return_image_path
)
def __len__(self):
return max(len(self.dataset_b), len(self.dataset_a))
def __getitem__(self, idx):
j = random.randint(0, len(self.dataset_b) - 1)
result_a = self.dataset_a[idx % len(self.dataset_a)]
result_b = self.dataset_b[j]
return dict(a=result_a, b=result_b)
def __repr__(self):
attrs = ["dataset_a", "dataset_b"]
attr_str = "".join([f"\t{a}={getattr(self, a)}\n" for a in attrs])
return f"{self.__class__.__name__}(\n{attr_str})"
class PairedDataset(UnpairedDataset):
def __init__(
self, folders_a, folders_b, transform, recursive=False, return_image_path=False
):
super(PairedDataset, self).__init__(
folders_a, folders_b, transform, recursive, return_image_path
)
self.dataset_a.files = sorted(self.dataset_a.files, key=lambda x: str(x))
self.dataset_b.files = sorted(self.dataset_b.files, key=lambda x: str(x))
assert len(self.dataset_b) == len(self.dataset_a)
def __getitem__(self, idx):
result_a = self.dataset_a[idx]
result_b = self.dataset_b[idx]
return dict(a=result_a, b=result_b)