forked from Andy-zhujunwen/UNET-ZOO
-
Notifications
You must be signed in to change notification settings - Fork 1
/
channel_unet.py
122 lines (108 loc) · 4.65 KB
/
channel_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch.nn as nn
import torch
from torch import autograd
class GAU(nn.Module):
def __init__(self, channels_high, channels_low, upsample=True):
super(GAU, self).__init__()
# Global Attention Upsample
self.upsample = upsample
self.conv3x3 = nn.Conv2d(channels_low, channels_low, kernel_size=3, padding=1, bias=False)
self.bn_low = nn.BatchNorm2d(channels_low)
self.conv1x1 = nn.Conv2d(channels_high, channels_low, kernel_size=1, padding=0, bias=False)
self.bn_high = nn.BatchNorm2d(channels_low)
if upsample:
self.conv_upsample = nn.ConvTranspose2d(channels_high, channels_low, kernel_size=4, stride=2, padding=1, bias=False)
self.bn_upsample = nn.BatchNorm2d(channels_low)
else:
self.conv_reduction = nn.Conv2d(channels_high, channels_low, kernel_size=1, padding=0, bias=False)
self.bn_reduction = nn.BatchNorm2d(channels_low)
self.relu = nn.ReLU(inplace=True)
def forward(self, fms_high, fms_low, fm_mask=None):
b, c, h, w = fms_high.shape
fms_high_gp = nn.AvgPool2d(fms_high.shape[2:])(fms_high).view(len(fms_high), c, 1, 1)
fms_high_gp = self.conv1x1(fms_high_gp)
#fms_high_gp = self.bn_high(fms_high_gp)
fms_high_gp = self.relu(fms_high_gp)
# fms_low_mask = torch.cat([fms_low, fm_mask], dim=1)
fms_low_mask = self.conv3x3(fms_low)
fms_low_mask = self.bn_low(fms_low_mask)
fms_att = fms_low_mask * fms_high_gp
if self.upsample:
out = self.relu(
self.bn_upsample(self.conv_upsample(fms_high)) + fms_att)
else:
out = self.relu(
self.bn_reduction(self.conv_reduction(fms_high)) + fms_att)
return out
class DoubleConv(nn.Module):
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, input):
return self.conv(input)
class myChannelUnet(nn.Module):
def __init__(self, in_ch, out_ch):
super(myChannelUnet, self).__init__()
filter = [64,128,256,512,1024]
self.conv1 = DoubleConv(in_ch, filter[0])
self.pool1 = nn.MaxPool2d(2)
self.conv2 = DoubleConv(filter[0], filter[1])
self.pool2 = nn.MaxPool2d(2)
self.conv3 = DoubleConv(filter[1], filter[2])
self.pool3 = nn.MaxPool2d(2)
self.conv4 = DoubleConv(filter[2], filter[3])
self.pool4 = nn.MaxPool2d(2)
self.conv5 = DoubleConv(filter[3], filter[4])
self.up6 = nn.ConvTranspose2d(filter[4], filter[3], 2, stride=2)
self.conv6 = DoubleConv(filter[3]*3,filter[3])
self.up7 = nn.ConvTranspose2d(filter[3], filter[2], 2, stride=2)
self.conv7 = DoubleConv(filter[2]*3, filter[2])
self.up8 = nn.ConvTranspose2d(filter[2], filter[1], 2, stride=2)
self.conv8 = DoubleConv(filter[1]*3, filter[1])
self.up9 = nn.ConvTranspose2d(filter[1], filter[0], 2, stride=2)
self.conv9 = DoubleConv(filter[0]*3, filter[0])
self.conv10 = nn.Conv2d(filter[0], out_ch, 1)
self.gau_1 = GAU(filter[4],filter[3])
self.gau_2 = GAU(filter[3],filter[2])
self.gau_3 = GAU(filter[2],filter[1])
self.gau_4 = GAU(filter[1],filter[0])
def forward(self, x):
c1 = self.conv1(x)
p1 = self.pool1(c1)
c2 = self.conv2(p1)
p2 = self.pool2(c2)
c3 = self.conv3(p2)
p3 = self.pool3(c3)
c4 = self.conv4(p3)
p4 = self.pool4(c4)
c5 = self.conv5(p4)
#print(c5.shape)
up_6 = self.up6(c5)
gau1 = self.gau_1(c5,c4)
# print(c4.shape)
# print(up_6.shape)
# print(gau1.shape)
merge6 = torch.cat([c4,up_6, gau1], dim=1)
c6 = self.conv6(merge6)
up_7 = self.up7(c6)
gau2 = self.gau_2(gau1,c3)
merge7 = torch.cat([c3,up_7, gau2], dim=1)
c7 = self.conv7(merge7)
up_8 = self.up8(c7)
gau3 = self.gau_3(gau2,c2)
merge8 = torch.cat([c2,up_8, gau3], dim=1)
c8 = self.conv8(merge8)
up_9 = self.up9(c8)
gau4 = self.gau_4(gau3,c1)
merge9 = torch.cat([c1,up_9, gau4], dim=1)
c9 = self.conv9(merge9)
c10 = self.conv10(c9)
out = nn.Sigmoid()(c10)
return out