-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame.scad
1052 lines (1019 loc) · 38.7 KB
/
game.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Game organizer library
include <cards.scad>
// TODO: hex boxes and grids from calico-box and civ-box
// naming conventions
// A angle
// C color
// D depth, diameter, thickness
// H height
// N number
// P polygon (list of points)
// Q quality setting (draft, final)
// R radius
// S spin (rotation vector)
// V vector [W, H] or [W, D, H] or [x, y, z]
// W width
Qdraft = 15; // 24 segments per circle (aligns with axes)
Qfinal = 5;
$fa = Qdraft;
$fs = 0.1;
EPSILON = 0.01;
MICRON = 0.001;
PHI = (1+sqrt(5))/2;
// filament metrics
Hflayer = 0.25;
Dfwidth = 0.70; // extrusion width
Dfoverlap = Hflayer * (1 - PI/4); // overlap between paths
Dfpath = tfloor(Dfwidth - Dfoverlap); // width multiplier for walls
echo(Hflayer=Hflayer, Dfwidth=Dfwidth, Dfoverlap=mround(Dfoverlap), Dfpath=Dfpath);
// organizer metrics
Dwall = 2.0;
Hfloor = Dwall;
Dthick = 3.0; // for heavier, stiffer walls
Dthin = 1.0; // for thin divider walls
Dgap = 0.1;
Dcut = eround(Dwall/3); // cutting margin for negative spaces
Djoiner = EPSILON; // overlap margin for joining parts
echo(Dwall=Dwall, Hfloor=Hfloor, Dgap=Dgap, Dcut=Dcut, Djoiner=Djoiner);
Rext = 3.0; // external corner radius
Rint = Rext - Dwall; // internal corner radius
echo(Rext=Rext, Rint=Rint);
Avee = 60; // default angle for notches (TODO: replace with Atab)
Atab = 60; // default angle for tabs & notches
Ahex = 60; // default angle for hexagons & triangles
Arack = 75; // default angle for card & tile racks
Adraw = 3; // default slope for draw trays (TODO: are these obsolete?)
Sup = [90, 0, 0];
Sdown = [-90, 0, 0];
echo(Avee=Avee, Ahex=Ahex, Atab=Atab, Arack=Arack, Adraw=Adraw);
Dthumb = 25.0; // index hole diameter
echo(Dthumb=Dthumb);
// game box interior
Vgame = [288, 288, 69]; // typical FFG box interior
Hwrap = 55; // cover art wrap ends here, approximately
echo(Vgame=Vgame, Hwrap=Hwrap);
// component metrics
Nplayers = undef; // number of players (for mats & other per-player items)
Hboard = 2.5; // thickness of cardboard & similar flat components
Hmat = Hboard; // mats: trackers, player boards, holding areas
Htile = Hboard; // tiles: hexes, maps, plaques
Htoken = Hboard; // tokens: coins, points, units
// hex tiles
Rhex = Dthumb; // hex major radius = side length = grid spacing
Rhex_group = Rhex; // size of gridded hexes (may overflow spacing)
Rhex_single = Rhex; // size of ungridded hex tiles
echo(Rhex=Rhex, Rhex_group=Rhex_group, Rhex_single=Rhex_single);
// chips & counters
Dchip = 40.0;
Rchip = Dchip / 2;
Hchip = 3.4;
// dice
Ddice = 16;
// available space
Hmanual = 1.0;
Hceiling = Vgame.z - eceil(Hmanual, 0.5); // vertical space under manuals
Hmain = Hceiling; // vertical space under manuals and boards
echo(Hmanual=Hmanual, Hceiling=Hceiling, Hmain=Hmain);
// container metrics
Rfoot = Rint - Dgap; // concentric with Rint & Rext with nesting gap
Hfoot = 1.0;
Htab = 1 - Hflayer;
Htray = 13.0;
Vtray = [72, 100, Htray];
Vfoot = volume(Vtray/8, Hfoot);
Hlip = Rint + Hfoot; // wall height above contents, scoops, etc.
echo(Vtray=Vtray, Htray=Htray, Hlip=Hlip);
echo(Vfoot=Vfoot, Hfoot=Hfoot, Rfoot=Rfoot);
Vbox = Vtray; // TODO
echo(Vbox=Vbox);
// minimum sizes and rounding
function eround(x, e=EPSILON) = e * round(x/e);
function eceil(x, e=EPSILON) = e * ceil(x/e);
function efloor(x, e=EPSILON) = e * floor(x/e);
function tround(x) = eround(x, e=0.05); // twentieths of a millimeter
function tceil(x) = eceil(x, e=0.05); // twentieths of a millimeter
function tfloor(x) = efloor(x, e=0.05); // twentieths of a millimeter
function mround(x) = eround(x, e=MICRON); // microns
function mceil(x) = eceil(x, e=MICRON); // microns
function mfloor(x) = efloor(x, e=MICRON); // microns
function lround(x) = eround(x, e=Hflayer); // layers
function lceil(x) = eceil(x, e=Hflayer); // layers
function lfloor(x) = efloor(x, e=Hflayer); // layers
function pround(x) = eround(x, e=Dfpath); // paths
function pceil(x) = eceil(x, e=Dfpath); // paths
function pfloor(x) = efloor(x, e=Dfpath); // paths
// tidy measurements
function vround(v) = [for (x=v) tround(x)];
function vceil(v) = [for (x=v) tceil(x)];
function vfloor(v) = [for (x=v) tfloor(x)];
// max & min for geometric quantities: keep sign but order by magnitude
function absmax(x, y) = let (ax=abs(x), ay=abs(y))
ax < ay ? y : ay < ax ? x : max(x, y);
function absmin(x, y) = let (ax=abs(x), ay=abs(y))
ax < ay ? x : ay < ax ? y : min(x, y);
// normalized area & volume vectors
function area(size, wide=undef) =
let (v=is_list(size) ? [size.x, size.y] : [size, size]) [
// calculate area with optional wide or tall override
is_undef(wide) ? v.x : wide ? absmax(v.x, v.y) : absmin(v.x, v.y),
is_undef(wide) ? v.y : wide ? absmin(v.x, v.y) : absmax(v.x, v.y),
];
function volume(size, height=undef, wide=undef) =
let (v=is_list(size) ? [size.x, size.y, size.z] : [size, size, size]) [
// calculate volume with optional height, wide, or tall override
is_undef(wide) ? v.x : wide ? absmax(v.x, v.y) : absmin(v.x, v.y),
is_undef(wide) ? v.y : wide ? absmin(v.x, v.y) : absmax(v.x, v.y),
is_undef(height) ? v.z : height,
];
// deck & box dimensions
function deck_volume(n=1, size=Vcard, height=Hcard) =
volume(size, n * height);
// box volume is equal to deck volume plus:
// 2*Rext in the X & Y dimensions
// Hfloor+lip in the Z dimenions
// width overrides the X dimension if set (with no added margin)
function deck_box_volume(n=0, size=Vcard, height=Hcard, width=0, lip=Hlip) =
let (v = deck_volume(n, size, height),
w = width ? width : v.z ? v.z + 2*Rext : Vtray.x,
d = v.y + 2*Rext,
h = v.x + Hfloor + lip)
// echo(v=v, w=w, d=d, h=h)
// echo(cards=floor((w-2*Rext)/height))
// echo(piles=floor((w-2*Rext)/height)/12)
[w, d, h];
// utility functions
function sum(v) = v ? [for(p=v) 1]*v : 0;
function swapxy(v) = [v.y, v.x, if (2<len(v)) for (i=[2:len(v)-1]) v[i]];
function unit_axis(n) = [for (i=[0:2]) i==n ? 1 : 0];
function numeric_flag(x, default) = is_num(x) ? x : x ? default : 0;
// transformations
module colorize(c=undef, alpha=undef) {
// skip the color() call if both parameters are undef
if (is_undef(c) && is_undef(alpha)) children();
else color(c, alpha) children();
}
module flatten(size, height=undef, space=undef, angle=undef) {
// shear and flatten with fixed sides (like flattening a cardboard box)
v = volume(size, height);
c = is_undef(space) ? v.x : max(space, v.x);
dx = min(c - v.x, v.z - EPSILON);
A = is_undef(angle) ? acos(dx/v.z) : max(angle, EPSILON);
x = v.x;
z = v.z*sin(A);
xc = x + v.z*cos(A);
mlean = [
[1, 0, -cos(A), xc-x],
[0, 1, 0, 0],
[0, 0, sin(A), 0],
];
multmatrix(m=mlean) children();
}
module lean(size, height=undef, space=undef, angle=undef) {
// shear and rotate with fixed volume (like leaning cards against a box)
v = volume(size, height);
c = is_undef(space) ? v.x : max(space, v.x);
function solve() = let (
// x^4 + Bcx^3 + Cx^2 + E = 0, via Ferrari's method
B = -2*c,
C = c^2 - v.z^2,
E = v.x^2*v.z^2,
a = -3*B^2/8 + C,
b = B^3/8 - B*C/2,
g = -3*B^4/256 + C*B^2/16 + E,
p = -a^2/12 - g,
q = -a^3/108 + a*g/3 - b^2/8,
r = -q/2 + sqrt(q^2/4 + p^3/27),
u = r^(1/3),
y = -5/6*a + u - p/(3*u),
w = sqrt(a + 2*y),
v = sqrt(-(3*a + 2*y + 2*b/w)),
x = -B/4 + (w-v)/2)
x;
x = is_undef(angle) ? solve() : v.x/sin(max(angle, EPSILON));
A = is_undef(angle) ? asin(v.x/x) : max(angle, EPSILON);
z = v.z*sin(A);
xc = x + v.z*cos(A);
mshear = [
[1, 0, 0, -v.x/2],
[0, 1, 0, 0],
[-1/tan(A), 0, 1, v.x/tan(A)/2],
];
mrotate = [
[sin(A), 0, -cos(A), xc-x/2],
[0, 1, 0, 0],
[cos(A), 0, sin(A), 0],
];
multmatrix(m=mrotate) multmatrix(m=mshear) children();
}
module raise(z=Hfloor+EPSILON) {
translate([0, 0, z]) children();
}
// 3D shapes
module fillet(rint=undef, rext=undef) {
// round inside corners to radius rint, outside corners to rext
// parameter order reflects typical usage of "fillet" for inside rounding
if (rint && rext)
fillet(rext=rext) fillet(rint=rint) children();
else if (rint)
offset(r=-rint) offset(delta=rint) children();
else if (rext)
offset(r=rext) offset(delta=-rext) children();
else children();
}
module rounded_square(size, r=Rext) {
// creates a rounded square with corners of radius r
v = area(size);
if (min(v)/2 <= r) stadium_fill(v);
else fillet(rext=r) square(v, center=true);
}
module quarter_round(size, r=Rext) {
// creates a square in the first quadrant with rounded outside corner
v = area(size);
o = v - [r, r];
if (r) hull() {
square([o.x, v.y]);
square([v.x, o.y]);
translate(o) intersection() {
circle(r=r);
square(r);
}
} else square(size);
}
module stadium(h, r=undef, d=undef) {
// creates a stadium with rectangle height h and radius r,
// centered on the Y axis
radius = abs(is_undef(d) ? r : d/2);
height = abs(h);
hull() {
if (height) square([2*radius, height], center=true);
for (i=[-1,+1]) translate([0, i*height/2]) circle(radius);
}
}
module stadium_fill(size) {
// creates a stadium sized to fit the given area
v = area(size, wide=false); // aligned vertically for stadium module
v0 = area(size); // original alignment
r = abs(v.x)/2;
h = abs(v.y) - 2*r;
a = (v.x == v0.x ? 0 : -90);
rotate(a) stadium(h, r);
}
module semistadium(h, r=undef, d=undef) {
// creates a semistadium with rectangle height h and radius r,
// centered on the positive Y axis
radius = abs(is_undef(d) ? r : d/2);
s = h ? sign(h) : 1; // there's no negative 0, so default to positive
hull() {
if (h) translate([0, h/2]) square([2*radius, abs(h)], center=true);
translate([0, h]) intersection() {
circle(radius);
translate([0, s*radius]) square(2*radius, center=true);
}
}
}
module semistadium_fill(size) {
// creates a semistadium sized to fit the given area,
// centered on the positive Y axis, scaled to width if necessary
v = area(size);
r = min(abs(v.x/2), abs(v.y));
h = max(abs(v.y) - r, 0);
s = h ? sign(v.y) : [v.x / r / 2, sign(v.y)];
scale(s) semistadium(h, r);
}
module capsule(h, r=undef, d=undef) {
// creates a capsule with cylinder height h and radius r,
// centered on the Z axis
radius = abs(is_undef(d) ? r : d/2);
height = abs(h);
hull() {
if (height) cylinder(h=h, r=radius, center=true);
for (i=[-1,+1]) translate([0, 0, i*height/2]) sphere(radius);
}
}
module semicapsule(h, r=undef, d=undef) {
// creates a semicapsule with cylinder height h and radius r,
// centered on the positive Z axis
radius = abs(is_undef(d) ? r : d/2);
s = h ? sign(h) : 1; // there's no negative 0, so default to positive
hull() {
if (h) translate([0, 0, h/2])
cylinder(h=abs(h), r=radius, center=true);
translate([0, 0, h]) intersection() {
sphere(radius);
scale([1, 1, s]) cylinder(h=2*radius, r=2*radius);
}
}
}
module prism(size=undef, height=undef, r=undef, rint=undef, rext=undef,
scale=1, center=false) {
v = is_undef(size) ? undef : volume(size, height);
h = is_undef(height) ? v.z : height;
ri = is_undef(rint) ? is_undef(r) ? 0 : r : rint; // inside turns
re = is_undef(rext) ? is_undef(r) ? 0 : r : rext; // outside turns
linear_extrude(height=h, scale=scale, center=center) fillet(ri, re) {
if (is_undef(v)) children();
else square(area(v), center=true);
}
}
module box_frame(size=Vgame, height=undef, wall=Dwall, wrap=Hwrap, gap=Dgap) {
// create the outline of a box with given interior and thickness
vint = volume(size, height);
vext = vint + [2*wall, 2*wall, wall];
dwall = wall - gap; // shrink the wall to leave a small gap
vcut = vext - [2*dwall, 2*dwall, 2*dwall];
raise(vint.z - vext.z) difference() {
prism(vext);
raise(dwall) {
for (n=[0:2]) for (i=[-1,+1]) // sides
translate(i*unit_axis(n) * 4/3*dwall) prism(vcut);
}
}
if (is_num(wrap)) {
raise(wrap) linear_extrude(height=2*wall) difference() {
square([vext.x, vext.y], center=true);
square([vcut.x, vcut.y], center=true);
}
}
}
module floor_thumb_cut(size, height=undef, d=Dthumb, r=Rext, mirror=false, cut=Dcut) {
v = volume(size, height);
dy = d/2; // depth of thumb round
s = mirror ? [-1, +1] : [+1];
h = v.z + 2*cut;
raise(-cut) {
// thumb round
for (s=s) scale([1, s]) translate([0, -cut-v.y/2])
prism(height=h, rint=r) {
// approximate width of opening at the tangents
// (quantization of $fa causes a small difference from ideal)
axis = d/2 + r;
span = 2*axis*cos(asin(r/axis));
translate([0, cut/2]) square([span, cut-EPSILON], center=true);
semistadium(dy - d/2 + cut, d=d);
}
// bottom index hole
prism(height=h) circle(d=d);
}
}
module wall_vee_cut(size, height=undef, angle=Avee, cut=Dcut, fillet=true) {
a0 = max(EPSILON, min(angle, 90));
v = volume(size, height);
run = a0 < 90 ? 1/tan(a0) : 0;
a1 = 90 - a0/2;
y1 = v.z - Rext;
y2 = v.z;
y3 = v.z + cut;
x0 = v.x/2;
x1 = x0 + y1*run;
x2 = x0 + y2*run;
x3 = x2 + Rext/tan(a1);
d = v.y + 2*cut;
if (fillet) {
ptop = [
[x3, y3], [x3, y2], [x2, y2], [x1, y1],
[-x1, y1], [-x2, y2], [-x3, y2], [-x3, y3],
];
pbot = [[x2, y2], [x0, 0], [-x0, 0], [-x2, y2]];
rotate([90, 0, 0]) {
prism(height=d, rint=Rext, center=true) polygon(ptop);
prism(height=d, rext=Rint, center=true) polygon(pbot);
}
} else {
pcut = [[x2, y3], [x2, y2], [x0, 0], [-x0, 0], [-x2, y2], [-x2, y3]];
rotate([90, 0, 0]) prism(height=d, center=true) polygon(pcut);
}
}
module hex_cut(size, height=undef, cut=Dcut) {
wall_vee_cut(size=size, height=height, angle=Ahex, cut=cut, fillet=false);
}
module deck_box(n=0, size=Vcard, height=Hcard, width=0, lip=Hlip, draw=false,
feet=false, color=undef) {
vbox = deck_box_volume(n=n, size=size, height=height, width=width);
shell = area(vbox);
well = shell - 2 * area(Dwall);
hole = shell - 2 * area(shell.y/5);
echo(vbox=vbox);
translate([vbox.x/2, 0]) colorize(color) difference() {
// outer shell
prism(vbox, r=Rext);
// card well
raise(Hfloor) prism(well, height=vbox.z, r=Rint);
// base round (if it fits)
dh = min(hole.x, hole.y); // hole diameter
if (3/5*Dthumb <= dh && dh <= Dthumb)
raise(-Dgap) prism(height=vbox.z) stadium_fill(hole);
else raise(-Dgap) prism(hole, height=vbox.z, r=Dthumb/2);
dtop = vbox.y - 4*Rext; // maximum notch width
if (draw) {
// thumb cut
vthumb = [Dthumb/sin(Avee), 2*Dwall, Dthumb];
translate([(Dwall-vbox.x)/2, 0, vbox.z-vthumb.z])
rotate(90) wall_vee_cut(vthumb);
// front cut
adraw = 75;
hvee = vbox.z - Hfloor; // maximum height
dxvee = hvee / tan(adraw);
vdraw = [dtop - 2*dxvee, 2*Dwall, hvee];
translate([(vbox.x-Dwall)/2, 0, Hfloor])
rotate(90) wall_vee_cut(vdraw, angle=adraw);
} else {
// side cuts
zvee = min(vbox.z/2, dtop*sin(Avee)/2);
hvee = vbox.z-zvee;
xvee = tround(zvee/sin(Avee));
vend = [xvee, vbox.x, zvee];
echo(vbox=vbox, dtop=dtop, zvee=zvee, xvee=xvee);
raise(hvee) rotate(90) wall_vee_cut(vend); // end vee
}
}
// feet
if (feet) colorize(color) for (i=[-1,+1]) {
// center feet in the available space
yin = Dthumb/sin(Avee) + Rext/tan(Avee);
yout = vbox.y/2 - Rext;
yfoot = (yin + yout) / 2;
translate([Rext-Dwall, i*yfoot, vbox.z-Rext-Rint]) intersection() {
translate([-3/2*Rext, 0]) cube(3*Rext, center=true);
sphere(Rext);
}
}
translate([vbox.x + Dgap, 0]) children();
}
module draw_box(n=0, size=Vcard, height=Hcard, width=0, lip=Hlip, feet=true,
color=undef) {
deck_box(n=n, size=size, height=height, width=width, lip=lip, draw=true,
feet=feet, color=color) children();
}
module tray_feet_cut(size=Vtray, height=undef, foot=Vfoot) {
if (foot.z) {
v = volume(size, height);
d = Rext - Rfoot; // margin between foot and tray
o = (area(v) - area(foot))/2 - area(d);
for (i=[-1,+1]) for (j=[-1,+1])
translate([i * o.x, j * o.y])
tray_foot(cut=Dcut);
}
}
module tray_foot(size=Vfoot, height=undef, r=Rfoot, cut=0) {
// creates feet for nesting trays, or set cut=Dcut to make the leg socket
vfoot = volume(size, height);
vslot = volume(vfoot, Hfloor/2) - volume(2*r, 0);
vleg = vslot - volume(Dgap, Hflayer); // fit tolerance + room for glue
if (cut) {
raise(-cut) prism(vslot, height=cut+vslot.z);
%raise(-vfoot.z) tray_foot();
} else {
prism(vfoot, r=r);
raise(vfoot.z-EPSILON) prism(vleg, height=vleg.z+EPSILON);
}
}
module card_well(size=Vtray, height=undef, cut=Dcut) {
vtray = volume(size, height);
vwell = volume(area(vtray) - 2*area(Dwall), vtray.z-Hfloor);
raise(Hfloor) {
// card well
prism(vwell, height=vwell.z+cut, r=Rint);
// thumb vee
span = Dthumb + 2*Rint;
dmax = (vwell.x - span) / 4; // maximum spread of vee at top
amin = atan((vtray.z-Hfloor)/dmax); // minimum vee angle
echo(span=span, dmax=dmax, amin=amin);
angle = max(Avee, eround(amin, Qfinal));
translate([0, Dwall-vtray.y]/2)
wall_vee_cut([span, Dwall, vtray.z-Hfloor], angle=angle, cut=cut);
}
floor_thumb_cut(vtray, cut=cut);
}
module card_tray(size=Vtray, height=undef, cards=0, feet=true, color=undef) {
vtray = volume(size, height);
colorize(color) difference() {
prism(vtray, r=Rext);
card_well(vtray);
if (feet && Hfoot) tray_feet_cut(vtray);
}
%raise() // card stack
if (cards) deck(cards) children();
else children();
}
module draw_tray(size=Vtray, height=undef, slope=Adraw, color=undef) {
vtray = volume(size, height);
vwell = area(vtray) - 2*area(Dwall);
hface = tan(slope) * vwell.y + Hfloor;
mslope = [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, -sin(slope), 1, 0],
];
colorize(color) difference() {
prism(vtray, r=Rext);
floor_thumb_cut(vtray);
tray_feet_cut(vtray);
// sloped floor
raise(Hfloor/2 + hface/2) multmatrix(m=mslope)
prism(vwell, height=vtray.z+Dcut, r=Rint);
// open front
translate([0, -vtray.y/2, hface]) rotate(90)
wall_vee_cut([2*Rext, vtray.x + Dcut, vtray.z-hface]);
}
}
module deck(n=10, size=Vcard, height=Hcard, up=false, color=undef) {
v = deck_volume(n=n, size=size, height=height);
spin = up ? [0, 90, 0] : 0;
lift = up ? v.x/2 : 0;
raise(lift) rotate(spin) colorize(color) prism(v, height=v.z);
translate(spin ? [v.z, 0, 0] : [0, 0, v.z]) children();
}
module creasing_tool(n=10, size=Vcard, height=Hcard, color=undef) {
// block for creasing index wrappers
v = deck_volume(n=n, size=size, height=height);
echo(creasing_tool=v);
colorize(color) prism(height=v.z) difference() {
square(area(v), center=true);
circle(d=Dthumb);
}
}
module deck_divider(size=Vcard_divider, height=Hcard_divider,
up=false, color=undef) {
// vertical divider for wide deck boxes
v = volume(size, height);
spin = up ? [0, 90, 0] : 0;
lift = up ? v.x/2 : 0;
raise(lift) rotate(spin) colorize(color) {
xthumb = 2/3 * Dthumb; // depth of indentation
y0 = v.y/2;
y1 = xthumb/sin(Avee);
y2 = y1/2;
x0 = v.x/2;
x1 = x0 - xthumb;
poly = [
[+x0, -y0], [+x0, -y1], [+x1, -y2],
[+x1, +y2], [+x0, +y1], [+x0, +y0],
[-x0, +y0], [-x0, +y1], [-x1, +y2],
[-x1, -y2], [-x0, -y1], [-x0, -y0],
];
prism(height=v.z, r=Rext) polygon(poly);
}
translate(spin ? [v.z, 0, 0] : [0, 0, v.z]) children();
}
module tray_divider(size=Vcard_divider, height=Hcard_divider,
index=Vtray.y, color=undef) {
// horizontal divider for card trays
v = volume(size, height);
colorize(color) prism(height=v.z, r=Rext) difference() {
square(area(v), center=true);
// match the index holes in the underlying card tray
projection() floor_thumb_cut([v.x, index, v.z], r=0, mirror=true);
}
translate([0, 0, v.z]) children();
}
module grid_divider(size=Vtray, height=undef, grid=[2, 3], wall=Dthick,
color=undef) {
// rectangular grid divider for boxes and trays
v = volume(size, height);
grid = area(grid);
function section(n, x) = (x + wall) / n;
cell = [section(grid.x, v.x), section(grid.y, v.y)];
echo(grid=grid, v=v, cell=cell);
%prism(v);
colorize(color) {
for (i=[1:grid.x-1]) translate([i*cell.x - v.x/2 - wall/2, 0])
prism([wall, v.y, v.z]);
for (i=[1:grid.y-1]) translate([0, i*cell.y - v.y/2 - wall/2])
prism([v.x, wall, v.z]);
}
}
module scoop_well(size, height=undef, rint=Rint, rscoop=2*Rext, lip=Hlip,
cut=Dcut) {
v = volume(size, height);
hmax = v.z - lip; // leave room for nesting feet
rmax = min(v.x, v.y) / 4; // limit radiuses to safe values
rn0 = min(rint, rmax);
rn1 = min(rscoop, rmax);
hull() {
raise(v.z) prism(v, height=cut, r=rn0);
for (angle=[0:$fa:90]) {
cz = 1-cos(angle);
cx = 1-sin(angle);
htier = hmax * cz;
vtier = v - 2 * cx * area(rn1);
rmax = min(vtier)/2 - EPSILON;
rtier = min(rmax, cx * (rn1 - rn0) + rn0);
raise(htier) prism(vtier, height=v.z-htier+EPSILON, r=rtier);
}
}
}
module scoop_tray(size=Vtray, height=undef, grid=1, rscoop=2*Rext, lip=Hlip,
color=undef) {
// tray with scoop bottom and optional grid of wells
grid = area(grid);
v = volume(size, height);
function section(n, x) = (x - Dwall) / n;
cell = [section(grid.x, v.x), section(grid.y, v.y)];
colorize(color) difference() {
prism(v, r=Rext);
raise(Hfloor) for (i=[1/2:grid.x]) for (j=[1/2:grid.y]) {
translate(area(v)/2 - area(Dwall)/2 - [i*cell.x, j*cell.y])
scoop_well(cell - area(Dwall), height=v.z-Hfloor, rscoop=rscoop,
lip=lip);
}
}
}
module hex(points=[[0, 0]], r=undef, grid=Rhex, merge=Djoiner) {
rhex = is_undef(r) ? len(points) == 1 ? Rhex_single : Rhex_group : r;
x1 = sin(Ahex) * rhex;
y1 = rhex / 2;
phex = [[0, rhex], [-x1, y1], [-x1, -y1], [0, -rhex], [x1, -y1], [x1, y1]];
dx = sin(Ahex) * grid;
dy = grid;
offset(delta=-merge) offset(delta=merge) for (p=points) {
translate([2 * (p.x + p.y/2) * dx, 1.5 * p.y * dy]) {
polygon(phex);
}
}
}
module hex_tile(points=[[0, 0]], n=0, height=Htile, r=undef, grid=Rhex) {
h = n ? eceil(n * height) : height;
prism(height=h) hex(points, r=r, grid=grid);
}
module hex_tray(points=[[0, 0]], n=0, height=Htile, r=undef, grid=Rhex,
lip=Hlip, hole=Dthumb) {
h = n ? eceil(n * height) + Hfloor + lip : height;
difference() {
prism(height=h, rint=Rint, rext=Rext)
offset(delta=Rext) hex(points, r=r, grid=grid);
raise(Hfloor) prism(height=h, rint=Rext, rext=Rint)
offset(delta=Rint) hex(points, r=r, grid=grid);
if (hole)
raise(-Dcut) prism(height=Hfloor+2*Dcut, r=Rext)
hex(points, r=hole/2, grid=grid);
}
}
module chip_tray(n=20, rows=5, color=undef) {
r = Rchip + Dgap;
h = lround(5/6*r); // depth of slot
a = asin((r-h)/r);
w = 2*r*cos(a); // width of slot at surface
overhang = r - w/2;
rail = 2*overhang + Rint;
slot = [w, Hchip*n + Rint, h];
well = [(slot.x + rail) * rows - rail, slot.y, slot.z];
v = well + [2*Dwall, 2*Dwall, Hfloor];
colorize(color) difference() {
prism(v, r=Rext);
for (i=[0:rows-1]) {
translate([slot.x/2 - well.x/2 + (slot.x + rail)*i, 0, r+Hfloor]) {
rotate([90, 0, 0]) cylinder(r=r, h=slot.y, center=true);
%rotate([90, 0, 0]) cylinder(r=Rchip, h=Hchip*n, center=true);
}
}
}
}
module tile_rack(n, size, angle=Arack, margin=Rext, lip=Hlip, color=undef) {
vtile = volume(size, wide=true);
echo(vtile=vtile);
width = n * size.x + 2*margin; // total width
// size (hypotenuse) of back and foot rests
back = max(vtile.x/2, vtile.y) + margin;
zback = round(back * sin(angle));
yback = zback/tan(angle);
height = zback + Hfloor;
depth = lceil(yback + (vtile.z+Dgap)*sin(angle) + 2*margin);
yfoot = depth - yback - 2*margin;
zfoot = (yfoot)/tan(angle);
foot = yfoot/sin(angle);
zlip = lround(zfoot + lip);
echo(back=back, foot=foot);
echo(yback=yback, yfoot=yfoot);
echo(zback=zback, zfoot=zfoot, zlip=zlip);
echo(height=height, depth=depth);
shell = [width, depth, height];
colorize(color) difference() {
prism(shell, r=margin);
well = [width+2*Dcut, foot, back+Dcut];
translate([-width/2-Dcut, margin-depth/2, zfoot+Hfloor]) hull() {
cube(well);
rotate([angle-90, 0, 0]) cube(well);
}
translate([-width/2, -depth/2-Dcut, zlip+Hfloor])
cube([width+2*Dcut, margin+2*Dcut, height-zlip+Dcut]);
}
%raise(Hfloor/2) cube([width, depth, Hfloor], center=true);
%for (n=[1:n])
translate([n*vtile.x-width/2+margin, yfoot+margin-depth/2, Hfloor])
rotate([90-angle, 0, 180]) cube([vtile.x, vtile.z, vtile.y]);
%translate([vtile.y/2, yfoot+margin-depth/2, Hfloor])
rotate([90-angle, 0, 180]) cube([vtile.y, vtile.z, vtile.x]);
}
// tabs & notches
module tab(size, w1=undef, w2=undef, angle=Atab, rint=Rint, rext=Rext,
joiner=Djoiner) {
// create a tab shape inside a given area
// size maximum extent of tab, including base rounding
// w1 base width
// w2 top width
// angle rise angle
// rint base rounding
// rext top rounding
// joiner depth below baseline (for joining parts)
v = area(size);
// adjust the angle to fit the available space, if needed
function tab_angle(v, w) =
// find the widest angle that fits between the tab shoulders
// https://math.stackexchange.com/a/4479659/88237
let (dc = [v.x/2-w/2, v.y-rint], // widest shoulder position
dt = sqrt(dc.x^2 + dc.y^2 - rint^2)) // corner -> shoulder tangent
atan((dc.x*rint + dc.y*dt) / (dc.x*dt - dc.y*rint));
min_angle = w2 ? tab_angle(v, w2) : EPSILON;
angle = w1 && w2 ? atan2(v.y, (w1-w2)/2) : max(angle, min_angle);
dx1 = rint/tan(90 - angle/2); // distance x1-x0
dx2 = v.y/tan(angle); // distance x2-x1
x1 = w1 ? w1/2 : w2 ? w2/2 + dx2 : v.x/2 - dx1; // base corner
x2 = w2 ? w2/2 : x1 - dx2; // top corner
x0 = x1 + dx1; // base tangent
xmax = max(x0, x2); // widest point
xt = xmax + rext; // base turnaround
y0 = -2*rext - EPSILON; // bottom of turnaround
p = [
[x2, v.y], [x1, 0], [xt, 0], [xt, y0],
[-xt, y0], [-xt, 0], [-x1, 0], [-x2, v.y],
];
echo(a=angle, w0=mround(2*x0), w1=mround(2*x1), w2=mround(2*x2));
intersection() {
fillet(rint, rext) polygon(p);
translate([0, v.y/2]) square([2*xmax, v.y+2*joiner], center=true);
translate([0, v.y/2]) square([v.x, v.y+2*joiner], center=true);
}
}
module hex_tab(size=undef, rhex=undef, angle=Ahex, r=Rext, joiner=Djoiner) {
ws = r/tan(90 - angle/2); // shoulder width
v = area(is_undef(size) ? 2*rhex + 2*ws : size); // safe default
echo(v=v, rhex=rhex);
// proportions
// a < 90: w1 = 2, w2 = 1, d = tan(a)/2
// a = 90: w1 = 2, w2 = 2, d = 1/2
// a > 90: w1 = 2, w2 = 2 - 1/tan(a), d = 1/2
pd0 = angle < 90 ? 1/2 * tan(angle) : 1;
pd = min(1, pd0);
p2 = angle < 90 ? 1 + 2*(pd0-pd)/tan(angle) : 2 - 2/tan(angle);
p1 = 2;
a = atan2(pd, 1-p2/2);
// fit hex to available space
wmax = v.x - 2*ws; // widest possible base
whex = rhex ? min(2*rhex, wmax) : wmax; // limit to 2*rhex
xscale = p1 / max(p1, p2) * whex/2;
yscale = v.y / pd;
scale = min(xscale, yscale);
w1 = p1 * scale;
w2 = p2 * scale;
d = pd * scale;
tab([v.x, d], w1=w1, w2=w2, angle=a, rint=r, rext=r, joiner=joiner);
}
module round_tab(size=undef, d=Dthumb, r=Rext, joiner=Djoiner) {
// approximate width of opening at the tangents
// (quantization of $fa causes a small difference from ideal)
axis = d/2 + r;
span = 2*axis*cos(asin(r/axis));
v = is_undef(size) ? area([span, d/2]) : area(size);
intersection() {
fillet(r, r) {
semistadium(h=0, r=d/2);
turnaround = [span+2*r, 2*r+EPSILON];
translate([0, -turnaround.y/2]) square(turnaround, center=true);
}
translate([0, v.y/2]) square([v.x, v.y+2*joiner], center=true);
}
}
module circle_tab(size=undef, d=Dthumb, r=Rint, joiner=Djoiner) {
axis = d/2 + r;
rise = d/2 - r;
span = 2 * sqrt(axis^2 - rise^2);
v = is_undef(size) ? area([max(d, span), d]) : area(size);
intersection() {
fillet(r, r) {
translate([0, d/2]) circle(d=d);
turnaround = [span+2*r, 2*r+EPSILON];
translate([0, -turnaround.y/2]) square(turnaround, center=true);
}
translate([0, v.y/2]) square([v.x, v.y+2*joiner], center=true);
}
}
module notch(size, w1=undef, w2=undef, angle=Atab, rint=Rint, rext=Rext, cut=Dcut) {
// create a notch shape inside a given area
// size maximum extent of notch, including base rounding
// w1 outer width
// w2 inner width (minimum)
// angle rise angle
// rint inner rounding
// rext outer rounding
// cut depth below baseline (for clean cuts)
tab(size=size, w1=w1, w2=w2, angle=angle, rint=rext, rext=rint, joiner=cut);
}
module hex_notch(size=undef, rhex=undef, angle=Ahex, r=Rext, cut=Dcut) {
hex_tab(size=size, rhex=rhex, angle=angle, r=r, joiner=cut);
}
module round_notch(size=undef, d=Dthumb, r=Rext, cut=Dcut) {
round_tab(size=size, d=d, r=r, joiner=cut);
}
module circle_notch(size=undef, d=Dthumb, r=Rint, cut=Dcut) {
circle_tab(size=size, d=d, r=r, joiner=cut);
}
module punch(d, cut=Dcut, center=false) {
raise(-cut) prism(height=d+2*cut, center=center) children();
}
function wall_thickness(wall=undef, thick=false, default=Dwall) =
let (minimum = thick ? 4*Dfpath : Dfwidth)
max(is_undef(wall) ? pround(default) : wall, minimum);
module stacking_tabs(size, height=Htab, r=Rext, gap=Dfpath/2, slot=false) {
v = area(size);
h = height + Djoiner;
d = 2*Dfpath;
w = v.y - 2*r - 2*Dfpath;
o = [v.x/2 - 3/2*d, w/2 - height];
for (i=[-1,+1]) translate([o.x*i, 0]) {
if (slot) raise(-Djoiner) hull() {
// widen slot and slightly lengthen it
vslot = [d+Dfpath, w+2*Dgap, h];
prism(vslot, r=gap);
// taper the space above the slot to ease bridging
prism([EPSILON, vslot.y, vslot.z+2*Hflayer]);
} else rotate([90, 0, 90]) prism(height=d, center=true)
tab([w, height], angle=90, rint=0, rext=height);
}
}
module scoop(size, height=undef, rint=Rint, rscoop=2*Rext, cut=Dcut) {
v = volume(size, height);
rmax = min(v.x/4, v.y/4, v.z); // limit radiuses to safe values
rn0 = min(rint, rmax);
rn1 = min(rscoop, rmax);
hull() {
raise(v.z) prism(v, height=cut, r=rn0);
for (angle=[0:$fa:90]) {
cz = 1-cos(angle);
cx = 1-sin(angle);
htier = rscoop * cz;
vtier = v - 2 * cx * area(rn1);
rmax = min(vtier)/2 - EPSILON;
rtier = min(rmax, cx * (rn1 - rn0) + rn0);
raise(htier) prism(vtier, height=v.z-htier+EPSILON, r=rtier);
}
}
}
module box(size=Vbox, height=undef, well=undef, depth=undef, r=Rext,
grid=1, wall=undef, divider=undef, tabs=false, slots=false,
scoop=false, hole=false, notch=false, index=false,
draw=false, feet=false, thick=false, color=undef) {
// box dimensions
vbox = volume(size, height);
thick = thick || tabs || slots || notch;
wall = is_undef(wall) ? wall_thickness(wall, thick) : wall;
vwell = volume(is_undef(well) ? area(vbox) - area(2*wall) : well,
is_undef(depth) ? vbox.z - Hfloor : depth);
dwall = max(vbox.x - vwell.x, vbox.y - vwell.y) / 2;
ddiv = wall_thickness(divider, thick, default=wall);
depth = vwell.z;
hfloor = vbox.z - vwell.z;
vcore = area(vbox) - area(4*r); // safe cutting area
// convert numeric flags to defaults
tabs = numeric_flag(tabs, default=vbox.y);
slots = numeric_flag(slots, default=vbox.y);
scoop = numeric_flag(scoop, default=3/2*r);
hole = numeric_flag(hole, default=Dthumb);
notch = numeric_flag(notch, default=Dthumb);
index = numeric_flag(index, default=depth/2);
draw = numeric_flag(draw, default=Dthumb);
echo(tabs=tabs, slots=slots, hole=hole, notch=notch, index=index);
// grid divisions
grid = area(grid);
dx = (vwell.x + ddiv) / grid.x;
dy = (vwell.y + ddiv) / grid.y;
vcell = vround([dx - ddiv, dy - ddiv, depth]);
echo(vbox=vbox, vwell=vwell, vcore=vcore, vcell=vcell,
dwall=dwall, ddiv=ddiv, depth=depth, hfloor=hfloor, r=r);
// build the box
colorize(color) difference() {
// exterior
union() {
prism(vbox, r=r);
if (tabs) {
o = [0, tabs < 0 ? vbox.y/2 + tabs/2 : 0, vbox.z];
vt = [vbox.x, abs(tabs), vbox.z];
translate(o) stacking_tabs(vt, r=r);
}
if (feet) {
o = [vcore.x/2-3/2*r, vbox.y/2+dwall-r, vbox.z-3/2*r];
for (i=[-1,+1]) scale([i, 1]) translate(o) sphere(r);
}
}
// tab slots
if (slots) {
o = [0, slots < 0 ? vbox.y/2 + slots/2 : 0];
vt = [vbox.x, abs(slots), vbox.z];
translate(o) stacking_tabs(vt, r=r, slot=true);
}
// interior
for (i=[1/2:grid.x]) for (j=[1/2:grid.y])
translate([i*dx, j*dy] - area(vwell/2) - area(ddiv)/2) {
if (depth) raise(hfloor) {
rint = r - dwall;
if (scoop) scoop(vcell, rint=rint, rscoop=scoop, cut=Dcut);
else prism(vcell, height=vcell.z+Dcut, r=rint);
}
if (hole) raise(-Dcut) cylinder(h=hfloor+2*Dcut, d=hole);
}
// side notch (for card trays)
if (notch) translate([0, -vbox.y/2]) {
punch(vbox.z) hex_notch([vcore.x, notch/2]);
raise(vbox.z) rotate(Sdown) punch(dwall)
notch([vcore.x, depth], w2=notch/sin(Ahex));
// hex_notch([vcore.x, depth]);
}
// top notch (for long deck boxes)
if (index) translate([0, -vbox.y/2, vbox.z])
rotate(Sdown) punch(vbox.y) hex_notch([vcore.x, index]);
// draw notch (for narrow deck boxes)
if (draw) {
translate([0, -vbox.y/2, vbox.z]) rotate(Sdown)
punch(dwall) notch([vbox.x, depth], w1=vcore.x, angle=75);
translate([0, vbox.y/2, vbox.z]) scale([1, -1]) rotate(Sdown)
punch(dwall) hex_notch([vcore.x, draw]);
}
}
// children
if ($children) raise(hfloor+EPSILON) children(0);
if (1<$children) raise(vbox.z+EPSILON) children([1:$children-1]);
}
module box_divider(size=Vbox, height=Hcard_divider, r=Rext, wall=undef, gap=Dgap,
hole=false, notch=false, draw=false, thick=true, color=undef) {
vbox = area(size);
vcore = vbox - area(2*r);
// convert numeric flags to defaults
hole = numeric_flag(hole, default=Dthumb);
notch = numeric_flag(notch, default=Dthumb);
echo(hole=hole, notch=notch);
// dimensions
thick = thick || notch;
wall = wall_thickness(wall, thick);
echo(wall=wall);
v = area(area(vbox) - area(2*wall + 2*gap));
echo(vbox=vbox, thick=thick, wall=wall, v=v);
// draw box
colorize(color) prism(height=height, r=r) difference() {
// exterior
square(v, center=true);
if (hole) circle(d=hole);
if (notch) for (i=[-1,+1]) scale([1, i])
translate([0, -vbox.y/2]) hex_notch([vcore.x, notch/2], r=0);
}
// children
raise(height+EPSILON) children();
}
module box_lid(size=Vbox, height=Hfloor, r=Rext, slots=Htab, color=undef) {
vbox = volume(size, height);