-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpwa_uniform.m
138 lines (119 loc) · 3.17 KB
/
pwa_uniform.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
function pwafun = pwa_uniform(nlfun)
% PWA_Uniform Piecewise-affine approximation.
%
% pwafun = pwa_uniform(nlfun)
%
% nlfun.Handle = @function_name;
% nlfun.Domain = [xmin xmax];
% nlfun.UGR = Uniform grid resolution;
% nlfun.Resolution = Fine grid resolution; % (Optional)
% nlfun.ObjFun = 'L2'; % or 'Linf' (Optional)
%
% pwafun.X = Griding points
% pwafun.Y = The value of the pwafun at griding points
% pwafun.T = Triangles
% pwafun.Abar = Linear coefficients; % Y = Abar{i}*X
% pwafun.Err = Approximation error for the fine mesh
% pwafun.W = Fine mesh points
% pwafun.Z = The value of pwafun at W
% pwafun.Obj = The value of the objective function
%
% Copyright: Behzad Samadi, Concordia University August 2005
% Argument checking
f = nlfun.Handle; % Specify the handle of the nonlinear function
n = length(nlfun.Domain); % Number of variables in the domain of nonlinearities
a=[];
for i=1:length(nlfun.Domain),
a=[a; nlfun.Domain{i}(1)]; % Set start point of the domain
end
if isfield(nlfun,'Parameters'),
Param = nlfun.Parameters; % Set the system parameters
else
Param = [];
end
if isfield(nlfun,'ObjFun'),
Option = nlfun.ObjFun; % Specify the objective (L2 or Linf)
end
%
for i = 1:n,
if any(diff(nlfun.Domain{i})<0),
eval(['error(''nlfun.domain{' num2str(i) '} should be increasing.'');'])
end
end
%
try
Y = pwa_nlfun(nlfun,a,Param);
catch
error(['The function can not be evaluated.']);
end
% The Approximation
% Create coarse mesh
X = pwa_grid(nlfun.Domain,nlfun.UGR);
if n == 1,
X = sort(X);
end
% Evaluate nlfun using coarse mesh points
Y = pwa_nlfun(nlfun,X,Param);
% Ver = ver('MATLAB');
% if str2num(Ver.Version(1))==7,
% T = delaunayn(X,{'Qt','Qbb','Qc','Qz'});
% else
T = delaunayn(X);
% end
% dt = DelaunayTri(X);
% T = dt.Triangulation;
[mT nT] = size(T);
% Create Abar{i}
for i = 1:mT,
y = [];
x = [];
for j = 1:nT,
y = [y Y(T(i,j),:)'];
x = [x [X(T(i,j),:)'; 1]];
end
Abar{i} = y/x;
if isempty(Abar{i}),
Abar{i} = 0;
end
end
% Pass local values to pwafun
pwafun.X = X;
pwafun.Y = Y;
pwafun.T = T;
%pwafun.dt = dt;
pwafun.Abar = Abar;
if ~isempty(nlfun.Resolution),
% Construct the fine mesh
% Z = f(W)
% W = [w1; w2; ... ; wm] is m times n
% Z = [z1; z2; ... ; zm] is m times p
%
% zi = f(wi)
% Create the fine mesh
for i=1:length(nlfun.Domain),
Domain{i} = nlfun.Domain{i}([1 end]);
end
W = pwa_grid(Domain,nlfun.Resolution);
% Evaluate nlfun using fine mesh points
Z = pwa_nlfun(nlfun,W,Param);
% Define error function
p = size(W,1);
Err = [];
for i = 1:p,
if ~isempty(Z),
Err = [Err;Z(i,:)-pwa_eval(X,Y,W(i,:))];
end
end
pwafun.Err = Err;
pwafun.W = W;
pwafun.Z = Z;
end
if exist('Option'),
% Set objective function
if strcmp(Option,'L2'),
Obj = sum(sum(Err.*Err));
elseif strcmp(Option,'Linf'),
Obj = max(max(abs(Err)));
end
pwafun.Obj = Obj;
end