-
Notifications
You must be signed in to change notification settings - Fork 0
/
2Dflat.py
220 lines (187 loc) · 6.5 KB
/
2Dflat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
Spyder Editor
This temporary script file is located here:
C:\Users\glbjch\.spyder2\.temp.py
"""
from t2grids import *
from t2data import * # import classes and routines for creating TOUGH2 files
from t2incons import *
import os
mod='20140827_1_py_it'
os.chdir('C:/Users/glbjch/Local Documents/Work/Modelling/Pytough/')
if not os.path.exists(mod):
os.makedirs(mod)
## top surface
#surf = np.loadtxt(
#r'C:\Users\glbjch\Local Documents\Work\Modelling\Pytough\2Ddev\2dprof.txt',
#delimiter='\t', skiprows=1) # load surface file
surf=np.array([[0,500],[2000,500]])
min5=-5*np.ones((surf.shape[0],1)) # adapt to min max of y (-5,+5)
five=5*np.ones((surf.shape[0],1))
surf=np.concatenate(((np.concatenate((
np.hsplit(surf,2)[0],min5,np.hsplit(surf,2)[1]),axis=1)),
(np.concatenate((np.hsplit(surf,2)[0],five,np.hsplit(surf,2)[1]),axis=1))),
axis=0)
maxx=2000
origin=[0,0,510]
dx=25
dy=[10]
dz=25
nx=maxx/dx
zcells=[10]*34+[10]*25
geo = mulgrid().rectangular([dx]*nx,dy,zcells, origin=origin, atmos_type =0,
convention = 2 ) # creates geometry 20 cells that are 500 m width in x,
# 1 cell 1000 m width in y
# 20 cells 100 m high in z
# to make use of more possible grid names add char=ascii_lowercase+ascii_uppercase
geo.atmosphere_volume= 1.e50 # change volume of atmos cell to 1e50
geo.fit_surface(surf, silent=True, layer_snap=2.0) # fit topograpghy surface
# define and add wells
#well1=well('well1',[[50,5,725],[50,5,0]])
#well2=well('well2',[[500,5,600],[500,5,0]])
#well3=well('well3',[[1000,5,600],[1000,5,0]])
#well4=well('well4',[[1750,5,300],[1750,5,0]])
#well5=well('well5',[[2200,5,200],[2200,5,0]])
#well6=well('well6',[[2800,5,100],[2800,5,0]])
#geo.add_well(well1)
#geo.add_well(well2)
#geo.add_well(well3)
#geo.add_well(well4)
#geo.add_well(well5)
#geo.add_well(well6)
# write geometry to output file
geo.write(mod+'/2dgrd.dat')
###### MAKE TOUGH GRID
grid = t2grid().fromgeo(geo)
# define relative permeability and cp paramters to use
rp={'type':11, 'parameters':[0.1,0.0,0.0,0.5,0.0,None,1.0]}
norp={'type':5, 'parameters':[]}
cp={'type':11, 'parameters':[0.0,-5000.0,0.001618,0.85,None,None,0.0]}
nocp={'type':1, 'parameters':[0.0,0.0,1.0]}
# define rock types and add cp and rp params
lp=rocktype('lp ', nad=3, permeability = [1.e-16]*2+[1e-16],
porosity=0.1, conductivity=2.51, specific_heat=920)
lp.dry_conductivity=1.5
lp.tortuosity=0.0
lp.relative_permeability=rp
lp.capillarity=cp
grid.add_rocktype(lp)
hp=rocktype('hp ', nad=3, permeability = [5.e-13]*2+[5.e-13],
porosity=0.34)
hp.dry_conductivity=1.5
hp.tortuosity=0.0
hp.relative_permeability=rp
hp.capillarity=cp
grid.add_rocktype(hp)
b=rocktype('nocp ', nad=3, permeability = [5.e-13]*2+[5.e-13],
porosity=0.34)
b.dry_conductivity=1.5
b.tortuosity=0.0
b.relative_permeability=norp
b.capillarity=nocp
grid.add_rocktype(b)
at=rocktype('atmos', nad=3, density=1.225, permeability = [5.e-13]*2+[5.e-13],
porosity=1.0)
at.dry_conductivity=1.5
at.tortuosity=0.0
at.relative_permeability=norp
at.capillarity=nocp
grid.add_rocktype(at)
# assign rock properties
# define low permeability region
lam=0.004####################################################################
k0=5.0e-13
for blk in grid.blocklist[1:]:
# if blk.centre[2] <= 250 and blk.centre[0] <= 1400:
# blk.rocktype = grid.rocktype['lp ']
# else:
blk.rocktype = grid.rocktype['hp ']
# permeability modification
col=geo.column[geo.column_name(str(blk))]
lay=geo.column_surface_layer(col)
hmax=geo.block_surface(lay,col)
pmx=blk.rocktype.permeability[0]*np.exp(-lam*(hmax-blk.centre[2]))
grid.block[(str(blk))].pmx=pmx
# define rocktype of atmospher block
for blk in grid.atmosphere_blocks[:]:
blk.rocktype= grid.rocktype['atmos']
grid.block[(str(blk))].pmx=blk.rocktype.permeability[0]
# select last column in block list and set as no cp and rp. Set to large volume
bcol=geo.columnlist[-1]
for lay in geo.layerlist:
blk=geo.block_name(lay.name, bcol.name)
if blk in geo.block_name_list:
grid.block[(blk)].rocktype= grid.rocktype['nocp ']
grid.block[(blk)].volume=1E50
# read template file
dat=t2data('initialflow2.inp')
# add rocktype, element and connection data to dat class
dat.grid=grid
# INCON
dat.incon.clear
# Define incon block
initP=1.013e5
initSG=0.99
initT=25.0
cond=[[0.0,0.0,0.0],[1.013e5,initSG,initT]]
dat.incon[geo.block_name_list[0]]=cond
for blk in grid.blocklist[1:]:
if grid.block[str(blk)].rocktype==nocp:
initP=1.013e5
initSG=0.99
initT=25.0
cond=[[0.0,0.0,0.0],[1.013e5,initSG,initT]]
dat.incon[str(blk)]=cond
elif blk.centre[2] < 0.0:
initP=1.013e5+(997.0479*9.81*abs(blk.centre[2]))
initSG=0.0
initT=25.0
cond=[[0.0,0.0,0.0],[initP,initSG,initT]]
dat.incon[str(blk)]=cond
elif grid.block[str(blk)].rocktype==lp:
initP=1.013e5
initSG=0.0
initT=25.0
cond=[[0.0,0.0,0.0],[1.013e5,initSG,initT]]
dat.incon[str(blk)]=cond
else:
initP=1.013e5
initSG=0.0
initT=25.0
cond=[[0.0,0.0,0.0],[1.013e5,initSG,initT]]
dat.incon[str(blk)]=cond
# Define GENER block
fpms=7.7354e-6 # flux per meter squared
fm=3.24e-8
fc=-7.199e-7
mingen=2.0e-7
cols=[col for col in geo.columnlist]
count=0
# time dependant generation
mult=0.9
yrsec=3600*24*365.25
sixmonth=yrsec/2
times=[0.0,1000*yrsec]+np.arange((1000*yrsec)+sixmonth,(1020*yrsec),sixmonth).tolist()+[(1020*yrsec),1.0e15]
numt=len(times)
dat.clear_generators()
for col in cols:
count=count+1
lay=geo.column_surface_layer(col)
blkname=geo.block_name(lay.name,col.name)
gx=(grid.block[blkname].centre[2]*fm)+fc
if gx < mingen: gx=mingen# for elevation dependant recharge!
# lowgx=(grid.block[blkname].centre[2]*fm)+(fc+(mult*fc))
# if lowgx < mingen-(mult*mingen): lowgx=mingen-(mult*mingen)
# highgx=(grid.block[blkname].centre[2]*fm)+(fc-(mult*fc))
# if highgx < mingen+(mult*mingen): lowgx=mingen+(mult*mingen)
# gxc=[gx]+((numt-3)/2)*[lowgx,highgx]+[gx,gx]
ex=numt*[1.0942e5]
# gxa=np.multiply(col.area,gxc).tolist()
# gen=t2generator(name=' q'+col.name,block=blkname,type='COM1',gx=None,ex=None,hg=None,fg=None, rate=gxa, enthalpy=ex, time=times,ltab=numt,itab=numt-1)
gen=t2generator(name=' q'+col.name,block=blkname,type='COM1', gx=gx*col.area, ex=1.0942e5)
dat.add_generator(gen)
# write vtk of input information
grid.write_vtk(geo,mod+'/inparam.vtk',wells=True)
# write tough2 input file
dat.write(mod+'/flow2.inp')