-
Notifications
You must be signed in to change notification settings - Fork 2
/
force.f
438 lines (438 loc) · 13.7 KB
/
force.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
SUBROUTINE FORCE
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
COMMON /GEOVAR/ NVAR,LOC(2,MAXPAR),IDUMY,DUMY(MAXPAR)
COMMON /GEOSYM/ NDEP,LOCPAR(MAXPAR),IDEPFN(MAXPAR),
1 LOCDEP(MAXPAR)
COMMON /GEOKST/ NATOMS,LABELS(NUMATM),
1NA(NUMATM),NB(NUMATM),NC(NUMATM)
COMMON /FMATRX/ FMATRX(MAXPAR**2+MAXPAR*3+1),IDUMY2(4)
COMMON /KEYWRD/ KEYWRD
COMMON /GRADNT/ GRAD(MAXPAR),GNORM
PARAMETER (IPADD=2*MORB2+2*MAXORB-MAXPAR-MAXPAR*MAXPAR)
COMMON /VECTOR/ CNORML(MAXPAR*MAXPAR),FREQ(MAXPAR),DUMMY(IPADD)
COMMON /ELEMTS/ ELEMNT(107)
COMMON /LAST / LAST
COMMON /MESAGE/ IFLEPO,ISCF
COMMON /SYMOPS/ R(14,120), NSYM, IPO(NUMATM,120), NENT
COMMON /SIMBOL/ SIMBOL(MAXPAR)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /COORD / COORD(3,NUMATM)
***********************************************************************
*
* FORCE CALCULATES THE FORCE CONSTANTS FOR THE MOLECULE, AND THE
* VIBRATIONAL FREQUENCIES. ISOTOPIC SUBSTITUTION IS ALLOWED.
*
***********************************************************************
COMMON /EULER / TVEC(3,3), ID
COMMON /SCFTYP/ EMIN, LIMSCF
COMMON /SCRACH/ STORE(MAXPAR**2)
DIMENSION XPARAM(MAXPAR), GR(3,NUMATM),
1DELDIP(3,MAXPAR), TRDIP(3,MAXPAR),LOCOLD(2,MAXPAR)
2,REDMAS(MAXPAR), SHIFT(6), DIPT(MAXPAR), TRAVEL(MAXPAR)
3, ROT(3,3), GEOREF(3,NUMATM), NAR(NUMATM), NBR(NUMATM),NCR(NUMATM)
CHARACTER KEYWRD*241, KEYS(241)*1, ELEMNT*2, SIMBOL*10
LOGICAL RESTRT, LINEAR, DEBUG, BARTEL, PRNT, LARGE, LIMSCF
EQUIVALENCE (GRAD(1), GR(1,1)), (KEYWRD,KEYS(1))
C
C TEST GEOMETRY TO SEE IF IT IS OPTIMIZED
TIME2=-1.D9
CALL GMETRY(GEO,COORD)
NVAOLD=NVAR
DO 10 I=1,NVAR
LOCOLD(1,I)=LOC(1,I)
10 LOCOLD(2,I)=LOC(2,I)
NVAR=0
NDEOLD=NDEP
NDEP=0
NUMAT=0
IF(LABELS(1) .NE. 99) NUMAT=1
DO 30 I=2,NATOMS
IF(LABELS(I).EQ.99) GOTO 30
IF(I.EQ.2)ILIM=1
IF(I.EQ.3)ILIM=2
IF(I.GT.3)ILIM=3
C
C IS IT A POLYMER?
C
IF(LABELS(I).EQ.107) THEN
ILIM=1
ELSE
NUMAT=NUMAT+1
ENDIF
C$DOIT ASIS
DO 20 J=1,ILIM
NVAR=NVAR+1
LOC(1,NVAR)=I
LOC(2,NVAR)=J
20 XPARAM(NVAR)=GEO(J,I)
30 CONTINUE
C
C IF A RESTART, THEN TSCF AND TDER WILL BE FAULTY, THEREFORE SET TO -1
C
TSCF=-1.D0
TDER=-1.D0
PRNT=(INDEX(KEYWRD,'RC=') .EQ. 0)
DEBUG=(INDEX(KEYWRD,'DFORCE') .NE. 0)
LARGE=(INDEX(KEYWRD,'LARGE') .NE. 0)
BARTEL=(INDEX(KEYWRD,'NLLSQ') .NE. 0)
RESTRT=(INDEX(KEYWRD,'RESTART') .NE. 0)
TIME1=SECOND()
IF (RESTRT) THEN
C
C CHECK TO SEE IF CALCULATION IS IN NLLSQ OR FORCE.
C
IF(BARTEL)GOTO 50
C
C CALCULATION IS IN FORCE
C
GOTO 90
ENDIF
CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .FALSE.)
IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
1'' KCALS/MOLE'')')ESCF
TIME2=SECOND()
TSCF=TIME2-TIME1
CALL COMPFG( XPARAM, .TRUE., ESCF1, .FALSE., GRAD, .TRUE.)
TIME3=SECOND()
TDER=TIME3-TIME2
IF(PRNT)WRITE(6,'(//10X,''INTERNAL COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM'',2X,''BOND'',9X,'' ANGLE'',10X,''DIHEDRAL'',/)')
L=0
IU=0
DO 40 I=1,NATOMS
IF(LABELS(I).EQ.99) GOTO 40
L=L+1
IL=IU+1
IF(I .EQ. 1) IU=IL-1
IF(I .EQ. 2) IU=IL
IF(I .EQ. 3) IU=IL+1
IF(I .GT. 3) IU=IL+2
IF(LABELS(I).EQ.107)IU=IL
IF(PRNT)WRITE(6,'(I6,4X,A2,F13.6,2F13.6)')
1L,ELEMNT(LABELS(I)),(GRAD(J),J=IL,IU)
40 CONTINUE
C TEST SUM OF GRADIENTS
GNORM=SQRT(DOT(GRAD,GRAD,NVAR))
IF(PRNT)WRITE(6,'(//10X,''GRADIENT NORM ='',F10.5)') GNORM
IF(GNORM.LT.10.D0) GOTO 70
IF(INDEX(KEYWRD,' LET ') .NE. 0) THEN
WRITE(6,'(///1X,''** GRADIENT IS VERY LARGE, BUT SINCE "LET"'',
1'' IS USED, CALCULATION WILL CONTINUE'')')
GOTO 90
ENDIF
WRITE(6,'(///1X,''** GRADIENT IS TOO LARGE TO ALLOW '',
1 ''FORCE MATRIX TO BE CALCULATED, (LIMIT=10) **'',//)')
50 CONTINUE
DO 60 I=1,NVAR
60 SIMBOL(I)='---'
WRITE(6,'(//10X,'' GEOMETRY WILL BE OPTIMIZED FIRST'')')
IF(BARTEL) THEN
WRITE(6,'(15X,''USING NLLSQ'')')
CALL NLLSQ(XPARAM,NVAR)
ELSE
WRITE(6,'(15X,''USING FLEPO'')')
CALL FLEPO(XPARAM,NVAR,ESCF)
C
C DID FLEPO USE ALL THE TIME ALLOWED?
C
IF(IFLEPO.EQ.-1) RETURN
ENDIF
LIMSCF=.FALSE.
CALL COMPFG( XPARAM, .TRUE., ESCF, .TRUE., GRAD, .TRUE.)
CALL WRITMO(TIME1,ESCF)
WRITE(6,'(//10X,''GRADIENT NORM ='',F10.7)') GNORM
CALL GMETRY(GEO,COORD)
70 CONTINUE
DO 80 J=1,NATOMS
NAR(J)=NA(J)
NBR(J)=NB(J)
NCR(J)=NC(J)
DO 80 I=1,3
80 GEOREF(I,J)=GEO(I,J)
C
C NOW TO CALCULATE THE FORCE MATRIX
C
C CHECK OUT SYMMETRY
90 CONTINUE
C
C NEED TO ENSURE THAT XYZINT WILL WORK CORRECTLY BEFORE CALL
C TO DRC.
C
L=0
DO 100 I=1,NATOMS
IF(LABELS(I).NE.99)THEN
L=L+1
LABELS(L)=LABELS(I)
ENDIF
100 CONTINUE
NATOMS=NUMAT
CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
CALL GMETRY(GEO,COORD)
IF(INDEX(KEYWRD,'THERMO').NE.0 .AND.GNORM.GT.1.D0) THEN
WRITE(6,'(//30X,''**** WARNING ****'',//
110X,'' GRADIENT IS VERY LARGE FOR A THERMO CALCULATION'',/
210X,'' RESULTS ARE LIKELY TO BE INACCURATE IF THERE ARE'')')
WRITE(6,'(10X,'' ANY LOW-LYING VIBRATIONS (LESS THAN ABOUT ''
1,''400CM-1)'')')
WRITE(6,'(10X,'' GRADIENT NORM SHOULD BE LESS THAN ABOUT '',
1''0.2 FOR THERMO'',/10X,'' TO GIVE ACCURATE RESULTS'')')
ENDIF
IF(TSCF.GT.0.D0) THEN
WRITE(6,'(//10X,''TIME FOR SCF CALCULATION ='',F8.2)')TSCF
WRITE(6,'(//10X,''TIME FOR DERIVATIVES ='',F8.2)')TDER
ENDIF
IF(NDEP.GT.0) THEN
WRITE(6,'(//10X,''SYMMETRY WAS SPECIFIED, BUT '',
1''CANNOT BE USED HERE'')')
NDEP=0
ENDIF
IF(PRNT)CALL AXIS(COORD,NUMAT,A,B,C,WTMOL,2,ROT)
NVIB=3*NUMAT-6
IF(ABS(C).LT.1.D-20)NVIB=NVIB+1
IF(ID.NE.0)NVIB=3*NUMAT-3
IF(PRNT) THEN
WRITE(6,'(/9X,''ORIENTATION OF MOLECULE IN FORCE CALCULATION'')
1')
WRITE(6,'(/,4X,''NO.'',7X,''ATOM'',9X,''X'',
19X,''Y'',9X,''Z'',/)')
ENDIF
L=0
DO 110 I=1,NATOMS
IF(LABELS(I) .EQ. 99) GOTO 110
L=L+1
IF(PRNT)WRITE(6,'(I6,7X,I3,4X,3F10.4)')
1 L,LABELS(I),(COORD(J,L),J=1,3)
110 CONTINUE
CALL FMAT(FMATRX, NVIB, TSCF, TDER, DELDIP,ESCF)
NA(1)=0
DO 120 J=1,NATOMS
NA(J)=NAR(J)
NB(J)=NBR(J)
NC(J)=NCR(J)
DO 120 I=1,3
120 GEO(I,J)=GEOREF(I,J)
IF(NVIB.LT.0)THEN
NDEP=NDEOLD
NVAR=0
RETURN
ENDIF
C
C THE FORCE MATRIX IS PRINTED AS AN ATOM-ATOM MATRIX RATHER THAN
C AS A 3N*3N MATRIX, AS THE 3N MATRIX IS VERY CONFUSING!
C
IJ=0
IU=0
DO 150 I=1,NUMAT
IL=IU+1
IU=IL+2
IM1=I-1
JU=0
DO 140 J=1,IM1
JL=JU+1
JU=JL+2
SUM=0.D0
C$DOIT ASIS
DO 130 II=IL,IU
C$DOIT ASIS
DO 130 JJ=JL,JU
130 SUM=SUM+FMATRX((II*(II-1))/2+JJ)**2
IJ=IJ+1
140 STORE(IJ)=SQRT(SUM)
IJ=IJ+1
150 STORE(IJ)=SQRT(
1FMATRX(((IL+0)*(IL+1))/2)**2+
2FMATRX(((IL+1)*(IL+2))/2)**2+
3FMATRX(((IL+2)*(IL+3))/2)**2+2.D0*(
4FMATRX(((IL+1)*(IL+2))/2-1)**2+
5FMATRX(((IL+2)*(IL+3))/2-2)**2+
6FMATRX(((IL+2)*(IL+3))/2-1)**2))
IF(DEBUG) THEN
WRITE(6,'(//10X,'' FULL FORCE MATRIX, INVOKED BY "DFORCE"'')')
I=-NVAR
CALL VECPRT(FMATRX,I)
ENDIF
IF(PRNT)THEN
WRITE(6,'(//10X,'' FORCE MATRIX IN MILLIDYNES/ANGSTROM'')')
CALL VECPRT(STORE,NUMAT)
ENDIF
L=(NVAR*(NVAR+1))/2
DO 160 I=1,L
160 STORE(I)=FMATRX(I)
IF(PRNT) CALL AXIS(COORD,NUMAT,A,B,C,SUM,0,ROT)
IF(PRNT)WRITE(6,'(//10X,''HEAT OF FORMATION ='',F12.6,
1'' KCALS/MOLE'')')ESCF
IF(LARGE)THEN
CALL FRAME(STORE,NUMAT,0, SHIFT)
CALL RSP(STORE,NVAR,NVAR,FREQ,CNORML)
DO 170 I=NVIB+1,NVAR
J=(FREQ(I)+50.D0)*0.01D0
170 FREQ(I)=FREQ(I)-J*100
IF(PRNT)THEN
WRITE(6,'(//10X,''TRIVIAL VIBRATIONS, SHOULD BE ZERO'')')
WRITE(6,'(/, F9.4,''=TX'',F9.4,''=TY'',F9.4,''=TZ'',
1 F9.4,''=RX'',F9.4,''=RY'',F9.4,''=RZ'')')
2(FREQ(I),I=NVIB+1,NVAR)
WRITE(6,'(//10X,''FORCE CONSTANTS IN MILLIDYNES/ANGSTROM''
1,'' (= 10**5 DYNES/CM)'',/)')
WRITE(6,'(8F10.5)')(FREQ(I),I=1,NVIB)
C CONVERT TO WEIGHTED FMAT
WRITE(6,'(//10X,'' ASSOCIATED EIGENVECTORS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVIB,I,NVAR)
ENDIF
ENDIF
CALL FREQCY(FMATRX,FREQ,CNORML,REDMAS,TRAVEL,.TRUE.,DELDIP)
C
C CALCULATE ZERO POINT ENERGY
C
C
C THESE CONSTANTS TAKEN FROM HANDBOOK OF CHEMISTRY AND PHYSICS 62ND ED.
C N AVOGADRO'S NUMBER = 6.022045*10**23
C H PLANCK'S CONSTANT = 6.626176*10**(-34)JHZ
C C SPEED OF LIGHT = 2.99792458*10**10 CM/SEC
C CONST=0.5*N*H*C/(1000*4.184)
CONST=1.4295718D-3
SUM=0.D0
DO 180 I=1,NVAR
180 SUM=SUM+FREQ(I)
SUM=SUM*CONST
IF(PRNT)
1WRITE(6,'(//10X,'' ZERO POINT ENERGY''
2, F12.3,'' KILOCALORIES PER MOLE'')')SUM
SUMM=0.D0
DO 230 I=1,NVAR
SUM1=1.D-20
C$DOIT VBEST
DO 190 J=1,NVAR
190 SUM1=SUM1+CNORML(J+(I-1)*NVAR)**2
SUM1=1.D0/SQRT(SUM1)
C$DOIT ASIS
DO 200 K=1,3
200 GRAD(K)=0.D0
C$DOIT ASIS
DO 220 K=1,3
SUM=0.D0
C$DOIT VBEST
DO 210 J=1,NVAR
210 SUM=SUM+CNORML(J+(I-1)*NVAR)*DELDIP(K,J)
SUMM=SUMM+ABS(SUM)
220 TRDIP(K,I)=SUM*SUM1
DIPT(I)=SQRT(TRDIP(1,I)**2+TRDIP(2,I)**2+TRDIP(3,I)**2)
230 CONTINUE
IF(PRNT)THEN
WRITE(6,'(//3X,'' THE LAST'',I2,'' VIBRATIONS ARE THE'',
1'' TRANSLATION AND ROTATION MODES'')')NVAR-NVIB
WRITE(6,'(3X,'' THE FIRST THREE OF THESE BEING TRANSLATIONS'',
1'' IN X, Y, AND Z, RESPECTIVELY'')')
ENDIF
IF(PRNT.AND.LARGE)THEN
WRITE(6,'(//10X,'' FREQUENCIES, REDUCED MASSES AND '',
1''VIBRATIONAL DIPOLES''/)')
NTO6=NVAR/6
NREM6=NVAR-NTO6*6
IINC1=-5
IF (NTO6.LT.1) GO TO 250
DO 240 I=1,NTO6
WRITE (6,'(/)')
IINC1=IINC1+6
IINC2=IINC1+5
WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
WRITE (6,'('' FREQ(I)'',6F10.4,/)') (FREQ(J),J=IINC1,IINC2)
WRITE (6,'('' MASS(I)'',6F10.5,/)') (REDMAS(J),J=IINC1,IINC2
1)
WRITE (6,'('' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
WRITE (6,'('' DIPZ(I)'',6F10.5,/)') (TRDIP(3,J),J=IINC1,IINC
12)
WRITE (6,'('' DIPT(I)'',6F10.5)')
1 (DIPT(J),J=IINC1,IINC2)
240 CONTINUE
250 CONTINUE
IF (NREM6.LT.1) GO TO 260
WRITE (6,'(/)')
IINC1=IINC1+6
IINC2=IINC1+(NREM6-1)
WRITE (6,'(3X,''I'',10I10)') (J,J=IINC1,IINC2)
WRITE (6,'('' FREQ(I)'',6F10.4)') (FREQ(J),J=IINC1,IINC2)
WRITE (6,'(/,'' MASS(I)'',6F10.5)') (REDMAS(J),J=IINC1,IINC2)
WRITE (6,'(/,'' DIPX(I)'',6F10.5)') (TRDIP(1,J),J=IINC1,IINC2)
WRITE (6,'('' DIPY(I)'',6F10.5)') (TRDIP(2,J),J=IINC1,IINC2)
WRITE (6,'('' DIPZ(I)'',6F10.5)') (TRDIP(3,J),J=IINC1,IINC2)
WRITE (6,'(/,'' DIPT(I)'',6F10.5)')
1 (DIPT(J),J=IINC1,IINC2)
260 CONTINUE
ENDIF
IF(PRNT)THEN
WRITE(6,'(//10X,'' NORMAL COORDINATE ANALYSIS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
ENDIF
C
C CARRY OUT IRC IF REQUESTED.
C
IF(INDEX(KEYWRD,'IRC')+INDEX(KEYWRD,'DRC').eq.677)THEN
DO 270 I=1,NVAR
LOC(1,I)=0
270 LOC(2,I)=0
NVAR=NVAOLD
DO 280 I=1,NVAR
LOC(1,I)=LOCOLD(1,I)
280 LOC(2,I)=LOCOLD(2,I)
CALL XYZINT(COORD,NUMAT,NA,NB,NC,1.D0,GEO)
LAST=1
CALL DRC(CNORML,FREQ)
NA(1)=0
NDEP=NDEOLD
NVAR=0
DO 290 I=1,3
DO 290 J=1,NATOMS
290 GEO(I,J)=GEOREF(I,J)
RETURN
ENDIF
CALL FREQCY(FMATRX,FREQ,CNORML,DELDIP,DELDIP,.FALSE.,DELDIP)
WRITE(6,'(//10X,'' MASS-WEIGHTED COORDINATE ANALYSIS'')')
I=-NVAR
CALL MATOUT(CNORML,FREQ,NVAR,I,NVAR)
CALL ANAVIB(COORD,FREQ,DIPT,NVAR,CNORML,STORE,
1FMATRX,TRAVEL,REDMAS)
IF(INDEX(KEYWRD,'THERMO').NE.0) THEN
CALL GMETRY(GEO,COORD)
I=INDEX(KEYWRD,' ROT')
IF(I.NE.0) THEN
SYM=READA(KEYWRD,I)
ELSE
SYM=1
ENDIF
LINEAR=(ABS(A*B*C) .LT. 1.D-10)
I=INDEX(KEYWRD,' TRANS')
C
C "I" IS GOING TO MARK THE BEGINNING OF THE GENUINE VIBRATIONS.
C
IF(I.NE.0)THEN
I=INDEX(KEYWRD,' TRANS=')
IF(I.NE.0)THEN
I=1+READA(KEYWRD,I)
J=NVIB-I+1
WRITE(6,'(//1X,''THE LOWEST'',I3,'' VIBRATIONS ARE NOT'',
1/,'' TO BE USED IN THE THERMO CALCULATION'')')I-1
ELSE
WRITE(6,'(//10X,''SYSTEM IS A TRANSITION STATE'')')
I=2
J=NVIB-1
ENDIF
ELSE
WRITE(6,'(//10X,''SYSTEM IS A GROUND STATE'')')
I=1
J=NVIB
ENDIF
CALL THERMO(A,B,C,LINEAR,SYM,WTMOL,FREQ(I),J,ESCF)
ENDIF
NA(1)=0
NVAR=0
NDEP=NDEOLD
DO 300 I=1,3
DO 300 J=1,NATOMS
300 GEO(I,J)=GEOREF(I,J)
RETURN
END