-
Notifications
You must be signed in to change notification settings - Fork 2
/
ffhpol.f
398 lines (398 loc) · 15 KB
/
ffhpol.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
SUBROUTINE FFHPOL (HEAT0,ATPOL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER*1 AXIS(3)
LOGICAL DEBUG
INCLUDE 'SIZES'
C***********************************************************************
C SUBROUTINE FOR THE FINITE FIELD CALCULATION OF ELECTRIC RESPONSE
C PROPERTIES (DIPOLE MOMENT, POLARIZABILITY, AND 1ST AND 2ND
C HYPERPOLARIZABILITY.
C
C HENRY A. KURTZ, DEPARTMENT OF CHEMISTRY
C MEMPHIS STATE UNIVERSITY
C MEMPHIS, TN 38152
C
C***********************************************************************
COMMON /CORE / CORE(107)
COMMON /GEOM / GEO(3,NUMATM), XCOORD(3,NUMATM)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM),NORS,NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /COORD / COORD(3,NUMATM)
COMMON /KEYWRD/ KEYWRD
COMMON /FIELD / EFIELD(3)
COMMON /EULER / TVEC(3,3),IDTVEC
CHARACTER*241 KEYWRD
C
C
C DIPE4 AND DIPDP HOLD THE CALCULATED DIPOLE MOMENTS
C
C APOLE4 AND APOLDP HOLD THE POLARIZABILITY TENSOR AS
C A PACKED ARRAY XX,XY,YY,XZ,YZ,ZZ
C
C BETAE4 AND BETAEP HOLD THE FIRST HYPERPOLARIZABILITY
C 1. XXX
C 2. YYY 6. YXX
C 3. ZZZ 7. YZZ
C 4. XYY 8. ZXX
C 5. XZZ 9. ZYY
C
DIMENSION HEATE(3,2),
1 DIPE4(3),APOLE4(6),BETAE4(9),GAMME4(6),
2 DIPDP(3),APOLDP(6),BETADP(9),GAMMDP(6),
3 DIP1P(3),DIP1M(3),DIP2P(3),DIP2M(3)
DIMENSION IPTBD(6), GRAD(MAXPAR)
DATA IPTBD /5,7,4,9,6,8/
C Energy: a.u. to kcal/mole
AUTOKC = 23.061D+00*27.2107D+00
C Dipole: a.u. to debye
AUTODB = 2.541563D+00
C Electric Field: a.u. to volt/meter
AUTOVM = 51.4257D+00
NBDIP = 1
NBCNT = 4
NGCNT = 4
C
DATA AXIS/'X','Y','Z'/
DEBUG = (INDEX(KEYWRD,'DEBUG').NE.0)
C
C FIELD STRENGTH IN A.U.
C
EFVAL=0.001D0
IDIP=1
C modification for variable field strength
IF(INDEX(KEYWRD,'POLAR=').NE.0)
1EFVAL=READA(KEYWRD,INDEX(KEYWRD,'POLAR='))
WRITE (6,10) EFVAL
10 FORMAT (//' APPLIED ELECTRIC FIELD MAGNITUDE: ',F15.5)
SFE = 1.D00/EFVAL
WRITE (6,20) 6.74834D0*ATPOL
20 FORMAT (//' ATOMIC CONTRIBUTION TO THE POLARIZABILITY: ',F15.6,/,
1 ' (IT IS ONLY APPLIED TO THE E4 RESULT)')
C.......................................................................
C CALCULATE THE POLARIZABILITY AND HYPERPOLARIZABILITIES ALONG
C THE THREE PRINCIPLE AXES. (THESE AXES DEPEND ON YOUR ARBITRARY
C ORIENTATION AND MAY NOT BE THE TRUE PRINCIPLE AXES.)
C.......................................................................
DO 150 ID = 1,3
IF (DEBUG) THEN
WRITE (6,30) AXIS(ID)
30 FORMAT (//,' ****** FIELD IN ',A1,' DIRECTION *****',/)
ENDIF
C
C ZERO THE FIELD
C
DO 40 I = 1,3
EFIELD(I) = 0.0D00
40 CONTINUE
HNUC = 0.0D00
DO 50 I = 1,NUMAT
HNUC = HNUC + EFVAL*GEO(ID,I)*CORE(NAT(I))*AUTOVM
50 CONTINUE
HNUC = HNUC*23.061D00
C +E(ID)
EFIELD(ID) = EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT1P,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DIIP = DIP1P(ID)
C -E(ID)
EFIELD(ID) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT1M,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1M)
DIIM = DIP1M(ID)
C +2E(ID)
EFIELD(ID) = 2.0D00*EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT2P,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP2P)
C -2E(ID)
EFIELD(ID) = -2.0D00*EFVAL
CALL COMPFG(GEO,.TRUE.,HEAT2M,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP2M)
C
C CORRECT FOR ELECTRIC FIELD - NUCLEAR INTERACTIONS
C
HEAT1P = HEAT1P + HNUC
HEATE(ID,1) = HEAT1P
HEAT1M = HEAT1M - HNUC
HEATE(ID,2) = HEAT1M
HEAT2P = HEAT2P + HNUC*2.D00
HEAT2M = HEAT2M - HNUC*2.D00
C
IF (DEBUG) THEN
WRITE (6,60)
60 FORMAT (' FIELDS OF: ',5X,'F',21X,'2F')
WRITE (6,70) HEAT1P,HEAT2P,HEAT1M,HEAT2M,
1 DIP1P(ID),DIP2P(ID),DIP1M(ID),DIP2M(ID)
70 FORMAT (' ENERGY:'/,
1 ' + ',2(F20.10,3X),/,' - ',2(F20.10,3X),/,
2 ' DIPOLE:'/,
3 ' + ',2(F20.10,3X),/,' - ',2(F20.10,3X))
ENDIF
C
C DIPOLE
C
ETERM = (1.0D00/12.D00)*(HEAT2P - HEAT2M)
1 - (2.0D00/3.0D00)*(HEAT1P - HEAT1M)
DIPE4(ID) = ETERM*SFE/AUTOKC
C
C ALPHA
C
IVL = (ID*(ID+1))/2
ETERM = 2.5D00*HEAT0 - (4.D00/3.D00)*(HEAT1P + HEAT1M)
1 + (1.D00/12.0D00)*(HEAT2P + HEAT2M)
APOLE4(IVL) = ETERM*SFE*SFE/AUTOKC + ATPOL*6.74834D0
C
C BETA
C
ETERM = (HEAT1P - HEAT1M) - 0.5D00*(HEAT2P - HEAT2M)
BETAE4(ID) = ETERM*SFE*SFE*SFE/AUTOKC
C
C GAMMA
C
ETERM = 4.0D00*(HEAT1P + HEAT1M) - (HEAT2P + HEAT2M)
1 - 6.0D00*HEAT0
GAMME4(ID) = ETERM*SFE*SFE*SFE*SFE/AUTOKC
C
C DIPOLE CALCULATIONS
C
DMU = (2.0D00/3.0D00)*(DIP1P(ID) + DIP1M(ID))
1 - (1.D00/6.0D00)*(DIP2P(ID) + DIP2M(ID))
DIPDP(ID) = DMU/AUTODB
AE = (2.0D00/3.0D00)*(DIP1P(ID) - DIP1M(ID))
1 - (1.0D00/12.D00)*(DIP2P(ID) - DIP2M(ID))
APOLDP(IVL) = AE*SFE/AUTODB
BE = (1.D00/3.0D00)*(DIP2P(ID) + DIP2M(ID)
1 - DIP1P(ID) - DIP1M(ID))
BETADP(ID) = BE*SFE*SFE/AUTODB
GE = 0.5D00*(DIP2P(ID) - DIP2M(ID))
1 - (DIP1P(ID) - DIP1M(ID))
GAMMDP(ID) = GE*SFE*SFE*SFE/AUTODB
DO 80 KD = 1,3
IF (KD.LT.ID) THEN
KVL = (ID*(ID-1))/2 + KD
AKI = (2.0D00/3.0D00)*(DIP1P(KD) - DIP1M(KD))
1 - (1.0D00/12.0D00)*(DIP2P(KD) - DIP2M(KD))
APOLDP(KVL) = AKI*SFE/AUTODB
ENDIF
IF (KD.NE.ID) THEN
BKII = (1.0D00/3.0D00)*(DIP2P(KD) + DIP2M(KD)
1 - DIP1P(KD) - DIP1M(KD))
NBD = IPTBD(NBDIP)
BETADP(NBD) = BKII*SFE*SFE/AUTODB
NBDIP = NBDIP + 1
ENDIF
80 CONTINUE
C.......................................................................
C
C NOW CALCULATE THE OFF AXIS RESULTS.
C
C.......................................................................
IDM1 = ID - 1
DO 140 JD = 1,IDM1
HNUCJ = 0.0D00
DO 90 I = 1,NUMAT
HNUCJ = HNUCJ + EFVAL*GEO(JD,I)*CORE(NAT(I))*51.4257D0
90 CONTINUE
HNUCJ = HNUCJ*23.061D0
DO 100 I = 1,3
EFIELD(I) = 0.0D00
100 CONTINUE
C
C DIAGONAL FIELDS WITH COMPONENTS EQUAL TO EFVAL
C
EFIELD(ID) = EFVAL
EFIELD(JD) = EFVAL
CALL COMPFG(GEO,.TRUE.,HPP,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DPP = DIP1P(ID)
EFIELD(JD) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HPM,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DPM = DIP1P(ID)
EFIELD(ID) = -EFVAL
CALL COMPFG(GEO,.TRUE.,HMM,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DMM = DIP1P(ID)
EFIELD(JD) = EFVAL
CALL COMPFG(GEO,.TRUE.,HMP,.TRUE.,GRAD,.FALSE.)
CALL DIPIND (DIP1P)
DMP = DIP1P(ID)
HPP = HPP + HNUC + HNUCJ
HPM = HPM + HNUC - HNUCJ
HMM = HMM - HNUC - HNUCJ
HMP = HMP - HNUC + HNUCJ
IF (DEBUG) THEN
WRITE (6,110)
110 FORMAT (/,' ',12X,'+,+',15X,'+,-',15X,'-,+',15X,'-,-')
WRITE (6,120) HPP,HPM,HMP,HMM
120 FORMAT (' E ',4F15.6)
ENDIF
C
C DIAGONAL FIELDS WITH COMPONENTS EQUAL TO 2*EFVAL
C
EFIELD(ID) = EFVAL*2.D00
EFIELD(JD) = EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2PP,.TRUE.,GRAD,.FALSE.)
EFIELD(JD) = -EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2PM,.TRUE.,GRAD,.FALSE.)
EFIELD(ID) = -EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2MM,.TRUE.,GRAD,.FALSE.)
EFIELD(JD) = EFVAL*2.D00
CALL COMPFG(GEO,.TRUE.,H2MP,.TRUE.,GRAD,.FALSE.)
H2PP = H2PP + 2.0D00*(HNUC + HNUCJ)
H2PM = H2PM + 2.0D00*(HNUC - HNUCJ)
H2MM = H2MM - 2.0D00*(HNUC + HNUCJ)
H2MP = H2MP - 2.0D00*(HNUC - HNUCJ)
IF (DEBUG) THEN
WRITE (6,130) H2PP,H2PM,H2MP,H2MM
130 FORMAT (' 2E ',4F15.6)
ENDIF
C
ATERM = (1.0D00/48.0D00)*(H2PP - H2PM - H2MP + H2MM)
1 - (1.0D00/3.0D00)*(HPP - HPM - HMP + HMM)
AIJ = ATERM*SFE*SFE/AUTOKC
IVL = (ID*(ID-1))/2 + JD
APOLE4(IVL) = AIJ
BTERM = 0.5D00*(HMM - HPP + HPM - HMP)
1 + HEATE(JD,1) - HEATE(JD,2)
BJII = BTERM*SFE*SFE*SFE/AUTOKC
BETAE4(NBCNT) = BJII
NBCNT = NBCNT + 1
BTERM = 0.5D00*(HMM - HPP + HMP - HPM)
1 + HEATE(ID,1) - HEATE(ID,2)
BIJJ = BTERM*SFE*SFE*SFE/AUTOKC
BETAE4(NBCNT) = BIJJ
NBCNT = NBCNT + 1
C
GTERM = -(HPP + HMM + HPM + HMP) - 4.0D00*HEAT0
1 + 2.0D00*(HEATE(ID,1) + HEATE(ID,2))
2 + 2.0D00*(HEATE(JD,1) + HEATE(JD,2))
GIIJJ = GTERM*SFE*SFE*SFE*SFE/AUTOKC
GAMME4(NGCNT) = GIIJJ
GDIP = 0.5D00*(DPP - DMP + DPM - DMM) - (DIIP - DIIM)
GAMMDP(NGCNT) = GDIP*SFE*SFE*SFE/AUTODB
NGCNT = NGCNT + 1
140 CONTINUE
C
150 CONTINUE
C-----------------------------------------------------------------------
C SUMMARIZE THE RESULTS
C-----------------------------------------------------------------------
WRITE (6,160)
160 FORMAT (//,' ',30('*'),' DIPOLE ',30('*'),//)
DIPE4T = SQRT(DIPE4(1)*DIPE4(1) + DIPE4(2)*DIPE4(2)
1 + DIPE4(3)*DIPE4(3))
DIPE4D = DIPE4T*AUTODB
DIPDPT = SQRT(DIPDP(1)*DIPDP(1) + DIPDP(2)*DIPDP(2)
1 + DIPDP(3)*DIPDP(3))
DIPDPD = DIPDPT*AUTODB
WRITE (6,170)
170 FORMAT (21X,'E4',13X,'DIP',/)
WRITE (6,180) 'X',DIPE4(1),DIPDP(1)
WRITE (6,180) 'Y',DIPE4(2),DIPDP(2)
WRITE (6,180) 'Z',DIPE4(3),DIPDP(3)
180 FORMAT (5X,A1,7X,2F15.6)
WRITE (6,190) DIPE4T,DIPDPT,
1 DIPE4D,DIPDPD
190 FORMAT (//' MAGNITUDE: ',2F15.6,' (A.U.)',/,
1 ' ',12X,2F15.6,' (DEBYE)')
C
C FIND EIGENVALUES AND EIGENVECTORS OF POLARIZATION MATRIX.
C
WRITE (6,200)
200 FORMAT (//,' ',22('*'),' POLARIZABILITY (ALPHA)',21('*'),//)
AVGPE4 = (APOLE4(1)+APOLE4(3)+APOLE4(6))/3.0D00
AVGA3 = AVGPE4*0.14818D00
AVGESU = AVGPE4*0.296352D-24
AVGPDP = (APOLDP(1)+APOLDP(3)+APOLDP(6))/3.0D00
AVGA3D = AVGPDP*0.14818D00
AVGESD = AVGPDP*0.296352D-24
WRITE (6,210)
210 FORMAT (' COMPONENT',12X,'E4',13X,'DIP',/)
WRITE (6,220) 'XX',APOLE4(1),APOLDP(1),
1 'YY',APOLE4(3),APOLDP(3),
2 'ZZ',APOLE4(6),APOLDP(6),
3 'XY',APOLE4(2),APOLDP(2),
4 'XZ',APOLE4(4),APOLDP(4),
5 'YZ',APOLE4(5),APOLDP(5)
220 FORMAT (' ',5X,A4,5X,2F15.6)
WRITE (6,230) AVGPE4,AVGPDP,AVGA3,AVGA3D,AVGESU,AVGESD
230 FORMAT (//,' AVERAGE POLARIZABILITY:',8X,'E4',13X,'DIP',/,
1 ' ',24X,2F15.6,' A.U.',/,
2 ' ',24X,2F15.6,' ANG.**3',/,
3 ' ',24X,2(1PD15.6),' ESU')
C
C CALCULATE "EXPERIMENTAL" HYPERPOLARIZABILITIES
C
C 8.65710D-33 is a.u. to e.s.u. conversion
WRITE (6,240)
240 FORMAT (//,' ',30('*'),' SECOND-ORDER (BETA)',25('*'),//)
BX4 = 0.6D00*(BETAE4(1) + BETAE4(4) + BETAE4(6))
BY4 = 0.6D00*(BETAE4(2) + BETAE4(5) + BETAE4(8))
BZ4 = 0.6D00*(BETAE4(3) + BETAE4(7) + BETAE4(9))
B4MU = (BX4*DIPE4(1) + BY4*DIPE4(2) + BZ4*DIPE4(3))/DIPE4T
B4ESU = B4MU*8.65710D-03
BXD = 0.6D00*(BETADP(1) + BETADP(4) + BETADP(6))
BYD = 0.6D00*(BETADP(2) + BETADP(5) + BETADP(8))
BZD = 0.6D00*(BETADP(3) + BETADP(7) + BETADP(9))
BDMU = (BXD*DIPDP(1) + BYD*DIPDP(2) + BZD*DIPDP(3))/DIPDPT
BDESU = BDMU*8.65710D-03
C
WRITE(6,'(29X,A2,25X,A6)')'1X','(1/2)X'
WRITE (6,250)
250 FORMAT (' COMPONENT',2(12X,'E4',10X,'DIP',2X),/)
WRITE (6,260) 'XXX',BETAE4(1),BETADP(1),BETAE4(1)/2,BETADP(1)/2
WRITE (6,260) 'XYY',BETAE4(4),BETADP(4),BETAE4(4)/2,BETADP(4)/2
WRITE (6,260) 'XZZ',BETAE4(6),BETADP(6),BETAE4(6)/2,BETADP(6)/2
WRITE (6,260) 'YYY',BETAE4(2),BETADP(2),BETAE4(2)/2,BETADP(2)/2
WRITE (6,260) 'YXX',BETAE4(5),BETADP(5),BETAE4(5)/2,BETADP(5)/2
WRITE (6,260) 'YZZ',BETAE4(8),BETADP(8),BETAE4(8)/2,BETADP(8)/2
WRITE (6,260) 'ZZZ',BETAE4(3),BETADP(3),BETAE4(3)/2,BETADP(3)/2
WRITE (6,260) 'ZXX',BETAE4(7),BETADP(7),BETAE4(7)/2,BETADP(7)/2
WRITE (6,260) 'ZYY',BETAE4(9),BETADP(9),BETAE4(9)/2,BETADP(9)/2
260 FORMAT (' ',5X,A4,2(5X,2F12.3))
WRITE (6,270)
270 FORMAT (//,' VECTOR COMPONENTS GIVEN BY:',/,
1 ' BI = (2/5)*(BI11+BI22+BI33)'/)
WRITE (6,280) 'BX',BX4,BXD,BX4/2,BXD/2
WRITE (6,280) 'BY',BY4,BYD,BY4/2,BYD/2
WRITE (6,280) 'BZ',BZ4,BZD,BZ4/2,BZD/2
280 FORMAT (' ',6X,A2,2(6X,2F12.3))
WRITE (6,290)
290 FORMAT (//' VALUE OF BETA ALONG THE DIPOLE MOMENT:'/)
WRITE (6,300) B4MU,BDMU,B4MU/2,BDMU/2,B4ESU,BDESU,B4ESU/2,BDESU/2
300 FORMAT (' ',4X,'B(AU)',2(5X,2F12.3,2X),/,
1 ' ',4X,'B(ESU)',4X,2F12.3,7X,2F12.3,' (X10-30)')
C
WRITE (6,310)
310 FORMAT (//' ',24('*'),' THIRD-ORDER (GAMMA)',24('*'),//)
GAMVAL = (GAMME4(1) + GAMME4(2) + GAMME4(3))
GAMVAL = GAMVAL + 2.0D00*(GAMME4(4) + GAMME4(5) + GAMME4(6))
GAMVAL = GAMVAL/5.0D00
C 5.05116D-40 is the a.u. to e.s.u. conversion
GAMESU = GAMVAL*5.05116D-04
GAMDIP = (GAMMDP(1) + GAMMDP(2) + GAMMDP(3))
GAMDIP = GAMDIP + 2.0D00*(GAMMDP(4) + GAMMDP(5) + GAMMDP(6))
GAMDIP = GAMDIP/5.0D00
GAMDES = GAMDIP*5.05116D-04
WRITE(6,'(23X,A2,25X,A6)')'1X','(1/6)X'
WRITE (6,320)
320 FORMAT (' ',17X,'E4',8X,'DIP',16X,'E4',8X,'DIP',/)
WRITE (6,330) 'XXXX',GAMME4(1),GAMMDP(1),GAMME4(1)/6,GAMMDP(1)/6
WRITE (6,330) 'YYYY',GAMME4(2),GAMMDP(2),GAMME4(2)/6,GAMMDP(2)/6
WRITE (6,330) 'ZZZZ',GAMME4(3),GAMMDP(3),GAMME4(3)/6,GAMMDP(3)/6
WRITE (6,330) 'XXYY',GAMME4(4),GAMMDP(4),GAMME4(4)/6,GAMMDP(4)/6
WRITE (6,330) 'XXZZ',GAMME4(5),GAMMDP(5),GAMME4(5)/6,GAMMDP(5)/6
WRITE (6,330) 'YYZZ',GAMME4(6),GAMMDP(6),GAMME4(6)/6,GAMMDP(6)/6
330 FORMAT (5X,A4,2F12.3,5X,2F12.3)
WRITE (6,340)
340 FORMAT (//' AVERAGE GAMMA GIVEN BY:',/,
1 ' (1/5)*[GXXX + GYYY + GZZZ + 2.0*(GXXYY + GXXZZ + GYYZZ)]')
WRITE(6,'(/,20X,A2,22X,A6)')'1X','(1/6)X'
WRITE (6,350) GAMVAL,GAMDIP,GAMVAL/6,GAMDIP/6,
1 GAMESU,GAMDES,GAMESU/6,GAMDES/6
350 FORMAT (/' <GAMMA> ',1PD12.5,1PD12.5,5X,1PD12.5,1PD12.5,' A.U.'/,
1 ' ',8X,1PD12.5,1PD12.5,5X,1PD12.5,1PD12.5,' ESU (X10-36)')
C
RETURN
END