-
Notifications
You must be signed in to change notification settings - Fork 2
/
deri22.f
165 lines (165 loc) · 5.94 KB
/
deri22.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
SUBROUTINE DERI22 (C,B,WORK,NORBS,FOC2,AB,MINEAR,FCI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION C(NORBS,NORBS), B(*), WORK(NORBS,NORBS), FOC2(*),
1AB(*), FCI(*)
************************************************************************
* 1) BUILD THE 2-ELECTRON FOCK MATRIX DEPENDING ON B AS FOLLOWS :
* DP = C * SCALE*B * C' ... DP DENSITY MATRIX 'DERIVATIVE',
* FOC2 = 0.5 * TRACE ( DP * (2<J>-<K>) ) DONE IN FOCK2 & FOCK1.
* 2) HALF-TRANSFORM ONTO M.O. BASIS : DPT = FOC2 * C
* AND COMPUTE DIAGONAL BLOCKS ELEMENTS OF C' * FOC2, EXTRACTING
* IN FCI ELEMENTS OVER C.I-ACTIVE M.O ONLY.
* 3) COMPUTE SUPERVECTOR AB = (DIAG + A) * B DEFINED BY THE MATRIX :
* AB(I,J)= ( DIAG(I,J)*B(I,J)+DPT(I,J) )*SCALAR(I,J) WITH I.GT.J,
* DIAG(I,J)=(EIGS(I)-EIGS(J))/(O(J)-O(I)) >0, O OCCUPANCY NUMBERS,
* EIGS EIGENVALUES OF FOCK OPERATOR WITH EIGENVECTORS C IN A.O.
*
* INPUT
* C(NORBS,NORBS) : M.O. EIGENVECTORS (COLUMNWISE).
* B(*) : B SUPERVECTOR PACKED BY OFF-DIAGONAL BLOCKS, SCALED
* WORK(*) : WORK AREA OF SIZE N*N.
* NORBS : NUMBER OF M.O.S
* NELEC,NMOS : LAST FROZEN CORE M.O. , C.I-ACTIVE BAND LENGTH.
* IN COMMON
* DIAG,SCALAR AS DEFINED IN 'DERI0'.
* OUTPUT
* FOC2(*) : 2-ELECTRON FOCK MATRIX, PACKED CANONICAL.
* AB(*) : ANTISYMMETRIC MATRIX PACKED IN SUPERVECTOR FORM WITH
* THE CONSECUTIVE FOLLOWING BLOCKS:
* 1) OPEN-CLOSED I.E. B(IJ)=B(I,J) WITH I OPEN & J CLOSED
* AND I RUNNING FASTER THAN J,
* 2) VIRTUAL-CLOSED SAME RULE OF ORDERING,
* 3) VIRTUAL-OPEN SAME RULE OF ORDERING.
* FCI(*) : FOCK DIAGONAL BLOCKS ELEMENTS OVER C.I-ACTIVE M.O.
* FOC2 CAN BE EQUIVALENCED WITH WORK IN THE CALLING SEQUENCE.
************************************************************************
C
C NOTE: NORBS AND NORD ARE THE SAME ADDRESS. THE NAME NORBD IS NOT
C USED HERE.
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM)
1 ,NLAST(NUMATM),NORBD,NELECS,NALPHA,NBETA
2 ,NCLOSE,NOPEN,NDUMY,FRACT
3 /WMATRX/ WJ(N2ELEC),WK(N2ELEC)
COMMON /DENSTY/ PDUMY(MPACK*2), DPA(MPACK)
COMMON /FOKMAT/ FDUMY(MPACK), SCALAR(MPACK)
COMMON /NVOMAT/ DIAG(MPACK/2)
COMMON /WORK1 / FDUMY2(15*NPULAY), DP(6*NPULAY)
COMMON /CIBITS/ NMOS,LAB,NELEC,NBO(3)
DIMENSION W(N2ELEC)
EQUIVALENCE (W,WJ)
C
LINEAR=(NORBS*(NORBS+1))/2
C
C DERIVATIVE OF THE DENSITY MATRIX IN DP (PACKED,CANONICAL).
C ----------------------------------------------------------
C DP = C * B * C' .
C
C STEP 0 : UNSCALE VECTOR B.
DO 10 I=1,MINEAR
10 B(I)=B(I)*SCALAR(I)
C
C STEP 1 : WORK = C * B . DP TEMPORARY ARRAY.
L=1
IF(NBO(2).NE.0 .AND. NBO(1).NE.0) THEN
C OPEN-CLOSED
CALL MXM(C(1,NBO(1)+1),NORBS,B(L),NBO(2),WORK,NBO(1))
C CLOSED-OPEN
CALL MXMT (C,NORBS,B(L),NBO(1),WORK(1,NBO(1)+1),NBO(2))
L=L+NBO(2)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(1).NE.0) THEN
C VIRTUAL-CLOSED
IF(L.GT.1) THEN
CALL MXM(C(1,NOPEN+1),NORBS,B(L),NBO(3),DP,NBO(1))
DO 20 I=1,NORBS*NBO(1)
20 WORK(I,1)=WORK(I,1)+DP(I)
ELSE
CALL MXM(C(1,NOPEN+1),NORBS,B(L),NBO(3),WORK,NBO(1))
ENDIF
C CLOSED-VIRTUAL
CALL MXMT(C,NORBS,B(L),NBO(1),WORK(1,NOPEN+1),NBO(3))
L=L+NBO(3)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(2).NE.0) THEN
C VIRTUAL-OPEN
CALL MXM(C(1,NOPEN+1),NORBS,B(L),NBO(3),DP,NBO(2))
J=NORBS*NBO(1)
DO 30 I=1,NORBS*NBO(2)
30 WORK(J+I,1)=WORK(J+I,1)+DP(I)
C OPEN-VIRTUAL
CALL MXMT (C(1,NBO(1)+1),NORBS,B(L),NBO(2),DP,NBO(3))
J=NORBS*NOPEN
DO 40 I=1,NORBS*NBO(3)
40 WORK(J+I,1)=WORK(J+I,1)+DP(I)
ENDIF
C
C STEP 2 : DP= WORK * C' WITH DP PACKED,CANONICAL.
L=0
DO 50 I=1,NORBS
DO 50 J=1,I
L=L+1
50 DP(L)=SDOT(NORBS,WORK(I,1),NORBS,C(J,1),NORBS)
C
C 2-ELECTRON FOCK MATRIX BUILD WITH THE DENSITY MATRIX DERIVATIVE.
C ----------------------------------------------------------------
C RETURNED IN FOC2 (PACKED CANONICAL).
DO 60 I=1,LINEAR
FOC2(I)=0.D0
60 DPA(I)=0.5D0*DP(I)
CALL FOCK2 (FOC2,DP,DPA,W,WJ,WK,NUMAT,NAT,NFIRST,NMIDLE,NLAST)
CALL FOCK1 (FOC2,DP,DPA,DPA)
C
C BUILD DP AND EXTRACT FCI.
C --------------------------
C
C DP(NORBS,NEND) = FOC2(NORBS,NORBS) * C(NORBS,NEND).
NEND=MAX(NOPEN,NELEC+NMOS)
L=1
DO 70 I=1,NOPEN
CALL SUPDOT (DP(L),FOC2,C(1,I),NORBS,1)
70 L=L+NORBS
C EXTRACT FCI
L=1
NEND=0
DO 90 LOOP=1,3
NINIT=NEND+1
NEND =NEND+NBO(LOOP)
N1=MAX(NINIT,NELEC+1 )
N2=MIN(NEND ,NELEC+NMOS)
IF(N2.LT.N1) GO TO 90
DO 80 I=N1,N2
IF(I.GT.NINIT) THEN
CALL MXM (C(1,I),1,DP(NORBS*(NINIT-1)+1),NORBS,FCI(L),I-N
1INIT)
L=L+I-NINIT
ENDIF
80 CONTINUE
90 CONTINUE
DO 100 I=NELEC+1,NELEC+NMOS
FCI(L)=-DOT(C(1,I),DP(NORBS*(I-1)+1),NORBS)
100 L=L+1
C
C NEW SUPERVECTOR AB = (DIAG + C'* FOC2 * C) * B , SCALED.
C --------------------------------------------------------
C
C PART 1 : AB(I,J) = (C' * DP)(I,J) DONE BY BLOCKS.
L=1
IF(NBO(2).NE.0 .AND. NBO(1).NE.0) THEN
CALL MTXM (C(1,NBO(1)+1),NBO(2),DP,NORBS,AB(L),NBO(1))
L=L+NBO(2)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(1).NE.0) THEN
CALL MTXM (C(1,NOPEN+1),NBO(3),DP,NORBS,AB(L),NBO(1))
L=L+NBO(3)*NBO(1)
ENDIF
IF(NBO(3).NE.0 .AND. NBO(2).NE.0)
1CALL MTXM(C(1,NOPEN+1),NBO(3),DP(NORBS*NBO(1)+1),
2NORBS,AB(L),NBO(2))
C
C PART 2 : AB = SCALE * (D * B + AB) AND RESCALE BASIS VECTOR B.
DO 110 I=1,MINEAR
AB(I)=(DIAG(I)*B(I)+AB(I))*SCALAR(I)
110 B(I)=B(I)/SCALAR(I)
RETURN
END