-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
292 lines (221 loc) · 10.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# modified from https://github.com/FGiuliari/Trajectory-Transformer/blob/master/baselineUtils.py
from torch.utils.data import Dataset
import os
import pandas as pd
import numpy as np
import torch
import random
import scipy.spatial
import scipy.io
import pickle
def create_dataset(dataset_folder,dataset_name,val_size,gt,horizon,delim="\t",train=True,eval=False, rotate=False, recreate=False, verbose=False):
if train==True:
datasets_list = os.listdir(os.path.join(dataset_folder,dataset_name, "train"))
full_dt_folder=os.path.join(dataset_folder,dataset_name, "train")
if train==False and eval==False:
datasets_list = os.listdir(os.path.join(dataset_folder, dataset_name, "val"))
full_dt_folder = os.path.join(dataset_folder, dataset_name, "val")
if train==False and eval==True:
datasets_list = os.listdir(os.path.join(dataset_folder, dataset_name, "test"))
full_dt_folder = os.path.join(dataset_folder, dataset_name, "test")
datasets_list = [f for f in datasets_list if 'pickle' not in f]
datasets_list=datasets_list
data={}
data_src=[]
data_trg=[]
data_seq_start=[]
data_frames=[]
data_dt=[]
data_peds=[]
val_src = []
val_trg = []
val_seq_start = []
val_frames = []
val_dt = []
val_peds=[]
if verbose:
print("start loading dataset")
print("validation set size -> %i"%(val_size))
saved_data = os.path.join(full_dt_folder, 'saved_data' + ('_rotate_' + rotate if rotate else '') + '.pickle')
if os.path.exists(saved_data) and not recreate:
with open(saved_data, 'rb') as f:
data = pickle.load(f)
print('loaded preprocessed data file {}'.format(saved_data))
else:
for i_dt, dt in enumerate(datasets_list):
if verbose:
print("%03i / %03i - loading %s"%(i_dt+1,len(datasets_list),dt))
raw_data = pd.read_csv(os.path.join(full_dt_folder, dt), delimiter=delim, names=["frame", "ped", "x", "y"],usecols=[0,1,2,3],na_values="?")
raw_data.sort_values(by=['frame','ped'], inplace=True)
inp,out,info=get_strided_data_clust(raw_data, gt, horizon, 1, rotate=rotate)
dt_frames=info['frames']
dt_seq_start=info['seq_start']
dt_dataset=np.array([i_dt]).repeat(inp.shape[0])
dt_peds=info['peds']
if val_size>0 and inp.shape[0]>val_size*2.5:
if verbose:
print("created validation from %s" % (dt))
k = random.sample(np.arange(inp.shape[0]).tolist(), val_size)
val_src.append(inp[k, :, :])
val_trg.append(out[k, :, :])
val_seq_start.append(dt_seq_start[k, :, :])
val_frames.append(dt_frames[k, :])
val_dt.append(dt_dataset[k])
val_peds.append(dt_peds[k])
inp = np.delete(inp, k, 0)
out = np.delete(out, k, 0)
dt_frames = np.delete(dt_frames, k, 0)
dt_seq_start = np.delete(dt_seq_start, k, 0)
dt_dataset = np.delete(dt_dataset, k, 0)
dt_peds = np.delete(dt_peds,k,0)
elif val_size>0:
if verbose:
print("could not create validation from %s, size -> %i" % (dt,inp.shape[0]))
data_src.append(inp)
data_trg.append(out)
data_seq_start.append(dt_seq_start)
data_frames.append(dt_frames)
data_dt.append(dt_dataset)
data_peds.append(dt_peds)
data['src'] = np.concatenate(data_src, 0)
data['trg'] = np.concatenate(data_trg, 0)
data['seq_start'] = np.concatenate(data_seq_start, 0)
data['frames'] = np.concatenate(data_frames, 0)
data['dataset'] = np.concatenate(data_dt, 0)
data['peds'] = np.concatenate(data_peds, 0)
data['dataset_name'] = datasets_list
with open(saved_data, 'wb') as f:
pickle.dump(data, f)
mean= data['src'].mean((0,1))
std= data['src'].std((0,1))
if val_size>0:
data_val={}
data_val['src']=np.concatenate(val_src,0)
data_val['trg'] = np.concatenate(val_trg, 0)
data_val['seq_start'] = np.concatenate(val_seq_start, 0)
data_val['frames'] = np.concatenate(val_frames, 0)
data_val['dataset'] = np.concatenate(val_dt, 0)
data_val['peds'] = np.concatenate(val_peds, 0)
return IndividualTfDataset(data, "train", mean, std), IndividualTfDataset(data_val, "validation", mean, std)
return IndividualTfDataset(data, "train", mean, std), None
# return IndividualTfDataset(data,"train",mean,std), IndividualTfDataset(data_val,"validation",mean,std)
class IndividualTfDataset(Dataset):
def __init__(self,data,name,mean,std):
super(IndividualTfDataset,self).__init__()
self.data=data
self.name=name
self.mean= mean
self.std = std
def __len__(self):
return self.data['src'].shape[0]
def __getitem__(self,index):
return {'src':torch.Tensor(self.data['src'][index]),
'trg':torch.Tensor(self.data['trg'][index]),
'frames':self.data['frames'][index],
'seq_start':self.data['seq_start'][index],
'dataset':self.data['dataset'][index],
'peds': self.data['peds'][index],
}
def create_folders(baseFolder,datasetName):
try:
os.mkdir(baseFolder)
except:
pass
try:
os.mkdir(os.path.join(baseFolder,datasetName))
except:
pass
def get_strided_data(dt, gt_size, horizon, step):
inp_te = []
dtt = dt.astype(np.float32)
raw_data = dtt
ped = raw_data.ped.unique()
frame=[]
ped_ids=[]
for p in ped:
for i in range(1+(raw_data[raw_data.ped == p].shape[0] - gt_size - horizon) // step):
frame.append(dt[dt.ped == p].iloc[i * step:i * step + gt_size + horizon, [0]].values.squeeze())
# print("%i,%i,%i" % (i * 4, i * 4 + gt_size, i * 4 + gt_size + horizon))
inp_te.append(raw_data[raw_data.ped == p].iloc[i * step:i * step + gt_size + horizon, 2:4].values)
ped_ids.append(p)
frames=np.stack(frame)
inp_te_np = np.stack(inp_te)
ped_ids=np.stack(ped_ids)
inp_no_start = inp_te_np[:,1:,0:2] - inp_te_np[:, :-1, 0:2]
inp_std = inp_no_start.std(axis=(0, 1))
inp_mean = inp_no_start.mean(axis=(0, 1))
inp_norm=inp_no_start
#inp_norm = (inp_no_start - inp_mean) / inp_std
#vis=inp_te_np[:,1:,2:4]/np.linalg.norm(inp_te_np[:,1:,2:4],2,axis=2)[:,:,np.newaxis]
#inp_norm=np.concatenate((inp_norm,vis),2)
return inp_norm[:,:gt_size-1],inp_norm[:,gt_size-1:],{'mean': inp_mean, 'std': inp_std, 'seq_start': inp_te_np[:, 0:1, :].copy(),'frames':frames,'peds':ped_ids}
def get_strided_data_2(dt, gt_size, horizon, step):
inp_te = []
dtt = dt.astype(np.float32)
raw_data = dtt
ped = raw_data.ped.unique()
frame=[]
ped_ids=[]
for p in ped:
for i in range(1+(raw_data[raw_data.ped == p].shape[0] - gt_size - horizon) // step):
frame.append(dt[dt.ped == p].iloc[i * step:i * step + gt_size + horizon, [0]].values.squeeze())
# print("%i,%i,%i" % (i * 4, i * 4 + gt_size, i * 4 + gt_size + horizon))
inp_te.append(raw_data[raw_data.ped == p].iloc[i * step:i * step + gt_size + horizon, 2:4].values)
ped_ids.append(p)
frames=np.stack(frame)
inp_te_np = np.stack(inp_te)
ped_ids=np.stack(ped_ids)
inp_relative_pos= inp_te_np-inp_te_np[:,:1,:]
inp_speed = np.concatenate((np.zeros((inp_te_np.shape[0],1,2)),inp_te_np[:,1:,0:2] - inp_te_np[:, :-1, 0:2]),1)
inp_accel = np.concatenate((np.zeros((inp_te_np.shape[0],1,2)),inp_speed[:,1:,0:2] - inp_speed[:, :-1, 0:2]),1)
#inp_std = inp_no_start.std(axis=(0, 1))
#inp_mean = inp_no_start.mean(axis=(0, 1))
#inp_norm= inp_no_start
#inp_norm = (inp_no_start - inp_mean) / inp_std
#vis=inp_te_np[:,1:,2:4]/np.linalg.norm(inp_te_np[:,1:,2:4],2,axis=2)[:,:,np.newaxis]
#inp_norm=np.concatenate((inp_norm,vis),2)
inp_norm=np.concatenate((inp_te_np,inp_relative_pos,inp_speed,inp_accel),2)
inp_mean=np.zeros(8)
inp_std=np.ones(8)
return inp_norm[:,:gt_size],inp_norm[:,gt_size:],{'mean': inp_mean, 'std': inp_std, 'seq_start': inp_te_np[:, 0:1, :].copy(),'frames':frames,'peds':ped_ids}
def get_strided_data_clust(dt, gt_size, horizon, step, rotate=False):
inp_te = []
dtt = dt.astype(np.float32)
raw_data = dtt
rotation_matrix = lambda alpha: np.array([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]])
ped = raw_data.ped.unique()
frame=[]
ped_ids=[]
# angles = np.arange(0, 360, 15) if rotate else [0]
angles = [0, 0.25 * np.pi, 0.5 * np.pi, -0.25 * np.pi, -0.5 * np.pi] if rotate else [0]
for p in ped:
for i in range(1+(raw_data[raw_data.ped == p].shape[0] - gt_size - horizon) // step):
# frame.append(dt[dt.ped == p].iloc[i * step:i * step + gt_size + horizon, [0]].values.squeeze())
# inp_te.append(raw_data[raw_data.ped == p].iloc[i * step:i * step + gt_size + horizon, 2:4].values)
# ped_ids.append(p)
# for angle in angles:
frame.append(dt[dt.ped == p].iloc[i * step:i * step + gt_size + horizon, [0]].values.squeeze())
ped_ids.append(p)
xy = raw_data[raw_data.ped == p].iloc[i * step:i * step + gt_size + horizon, 2:4].values
# xy = xy @ rotation_matrix(angle)
inp_te.append(xy)
frames=np.stack(frame)
inp_te_np = np.stack(inp_te)
ped_ids=np.stack(ped_ids)
ped_ids_aug = []
for angle in angles:
ped_ids_aug.append(np.matmul(inp_te_np, rotation_matrix(angle)))
inp_te_np = np.concatenate(ped_ids_aug)
frames = np.tile(frames, (len(angles), 1))
ped_ids = np.tile(ped_ids, (len(angles), ))
inp_speed = np.concatenate((np.zeros((inp_te_np.shape[0],1,2)),inp_te_np[:,1:,0:2] - inp_te_np[:, :-1, 0:2]),1)
inp_norm=np.concatenate((inp_te_np,inp_speed),2)
inp_mean=np.zeros(4)
inp_std=np.ones(4)
return inp_norm[:,:gt_size],inp_norm[:,gt_size:],{'mean': inp_mean, 'std': inp_std, 'seq_start': inp_te_np[:, 0:1, :].copy(),'frames':frames,'peds':ped_ids}
def distance_metrics(gt,preds):
errors = np.zeros(preds.shape[:-1])
for i in range(errors.shape[0]):
for j in range(errors.shape[1]):
errors[i, j] = scipy.spatial.distance.euclidean(gt[i, j], preds[i, j])
return errors.mean(),errors[:,-1].mean(),errors