-
Notifications
You must be signed in to change notification settings - Fork 5
/
lbebm_eth.py
585 lines (465 loc) · 24.4 KB
/
lbebm_eth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import os
import math
import random
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils import data
from torch.autograd import Variable
import datetime, shutil, argparse, logging, sys
import utils
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=3, type=int)
parser.add_argument('--gpu_deterministic', type=bool, default=False, help='set cudnn in deterministic mode (slow)')
parser.add_argument("--data_scale", default=60, type=float)
parser.add_argument("--dec_size", default=[1024, 512, 1024], type=list)
parser.add_argument("--enc_dest_size", default=[256, 128], type=list)
parser.add_argument("--enc_latent_size", default=[256, 512], type=list)
parser.add_argument("--enc_past_size", default=[512, 256], type=list)
parser.add_argument("--predictor_hidden_size", default=[1024, 512, 256], type=list)
parser.add_argument("--non_local_theta_size", default=[256, 128, 64], type=list)
parser.add_argument("--non_local_phi_size", default=[256, 128, 64], type=list)
parser.add_argument("--non_local_g_size", default=[256, 128, 64], type=list)
parser.add_argument("--non_local_dim", default=128, type=int)
parser.add_argument("--fdim", default=16, type=int)
parser.add_argument("--future_length", default=12, type=int)
parser.add_argument("--device", default=1, type=int)
parser.add_argument("--kld_coeff", default=0.5, type=float)
parser.add_argument("--future_loss_coeff", default=1, type=float)
parser.add_argument("--dest_loss_coeff", default=2, type=float)
parser.add_argument("--learning_rate", default=0.0001, type=float)
parser.add_argument("--lr_decay_step_size", default=4, type=int)
parser.add_argument("--lr_decay_gamma", default=0.5, type=float)
parser.add_argument("--mu", default=0, type=float)
parser.add_argument("--n_values", default=20, type=int)
parser.add_argument("--nonlocal_pools", default=3, type=int)
parser.add_argument("--num_epochs", default=100, type=int)
parser.add_argument("--num_workers", default=0, type=int)
parser.add_argument("--past_length", default=8, type=int)
parser.add_argument("--sigma", default=1.3, type=float)
parser.add_argument("--zdim", default=16, type=int)
parser.add_argument("--print_log", default=6, type=int)
parser.add_argument("--sub_goal_indexes", default=[2, 5, 8, 11], type=list)
parser.add_argument('--e_prior_sig', type=float, default=2, help='prior of ebm z')
parser.add_argument('--e_init_sig', type=float, default=2, help='sigma of initial distribution')
parser.add_argument('--e_activation', type=str, default='lrelu', choices=['gelu', 'lrelu', 'swish', 'mish'])
parser.add_argument('--e_activation_leak', type=float, default=0.2)
parser.add_argument('--e_energy_form', default='identity', choices=['identity', 'tanh', 'sigmoid', 'softplus'])
parser.add_argument('--e_l_steps', type=int, default=20, help='number of langevin steps')
parser.add_argument('--e_l_steps_pcd', type=int, default=20, help='number of langevin steps')
parser.add_argument('--e_l_step_size', type=float, default=0.4, help='stepsize of langevin')
parser.add_argument('--e_l_with_noise', default=True, type=bool, help='noise term of langevin')
parser.add_argument('--e_sn', default=False, type=bool, help='spectral regularization')
parser.add_argument('--e_lr', default=0.00003, type=float)
parser.add_argument('--e_is_grad_clamp', type=bool, default=False, help='whether doing the gradient clamp')
parser.add_argument('--e_max_norm', type=float, default=25, help='max norm allowed')
parser.add_argument('--e_decay', default=1e-4, help='weight decay for ebm')
parser.add_argument('--e_gamma', default=0.998, help='lr decay for ebm')
parser.add_argument('--e_beta1', default=0.9, type=float)
parser.add_argument('--e_beta2', default=0.999, type=float)
parser.add_argument('--memory_size', default=200000, type=int)
parser.add_argument('--dataset_name', type=str, default='eth')
parser.add_argument('--dataset_folder', type=str, default='dataset')
parser.add_argument('--obs',type=int,default=8)
parser.add_argument('--preds',type=int,default=12)
parser.add_argument('--delim',type=str,default='\t')
parser.add_argument('--verbose',action='store_true')
parser.add_argument('--val_size',type=int, default=0)
parser.add_argument('--batch_size',type=int,default=70)
parser.add_argument('--ny', type=int, default=1)
parser.add_argument('--model_path', type=str, default='saved_models/lbebm_eth.pt')
return parser.parse_args()
def set_gpu(gpu):
torch.cuda.set_device('cuda:{}'.format(gpu))
def get_exp_id(file):
return os.path.splitext(os.path.basename(file))[0]
def get_output_dir(exp_id):
t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
output_dir = os.path.join('output/' + exp_id, t)
os.makedirs(output_dir, exist_ok=True)
return output_dir
def setup_logging(name, output_dir, console=True):
log_format = logging.Formatter("%(asctime)s : %(message)s")
logger = logging.getLogger(name)
logger.handlers = []
output_file = os.path.join(output_dir, 'output.log')
file_handler = logging.FileHandler(output_file)
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
if console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(log_format)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
return logger
def set_cuda(deterministic=True):
if torch.cuda.is_available():
if not deterministic:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
else:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def set_seed(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def copy_source(file, output_dir):
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
def main():
exp_id = get_exp_id(__file__)
output_dir = get_output_dir(exp_id)
copy_source(__file__, output_dir)
args = parse_args()
set_gpu(args.device)
set_cuda(deterministic=args.gpu_deterministic)
set_seed(args.seed)
args.way_points = list(set(list(range(args.future_length))) - set(args.sub_goal_indexes))
logger = setup_logging('job{}'.format(0), output_dir, console=True)
logger.info(args)
if args.val_size==0:
train_dataset, _ = utils.create_dataset(args.dataset_folder,args.dataset_name,0,args.obs,args.preds,delim=args.delim,train=True, verbose=True)
val_dataset, _ = utils.create_dataset(args.dataset_folder,args.dataset_name,0,args.obs,args.preds,delim=args.delim,train=False, verbose=True)
else:
train_dataset, val_dataset = utils.create_dataset(args.dataset_folder, args.dataset_name, args.val_size,args.obs, args.preds, delim=args.delim, train=True, verbose=args.verbose)
test_dataset, _ = utils.create_dataset(args.dataset_folder,args.dataset_name,0,args.obs,args.preds,delim=args.delim,train=False,eval=True, verbose=True)
tr_dl = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
val_dl = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size*10, shuffle=False, num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size*10, shuffle=False, num_workers=0)
def initial_pos(traj_batches):
batches = []
for b in traj_batches:
starting_pos = b[:,7,:].copy()/1000
batches.append(starting_pos)
return batches
def sample_p_0(n, nz=16):
return args.e_init_sig * torch.randn(*[n, nz]).double().cuda()
def calculate_loss(dest, dest_recon, mean, log_var, criterion, future, interpolated_future, sub_goal_indexes):
dest_loss = criterion(dest, dest_recon)
future_loss = criterion(future, interpolated_future)
subgoal_reg = criterion(dest_recon, interpolated_future.view(dest.size(0), future.size(1)//2, 2)[:, sub_goal_indexes, :].view(dest.size(0), -1))
kl = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
return dest_loss, future_loss, kl, subgoal_reg
class MLP(nn.Module):
def __init__(self, input_dim, output_dim, hidden_size=(1024, 512), activation='relu', discrim=False, dropout=-1):
super(MLP, self).__init__()
dims = []
dims.append(input_dim)
dims.extend(hidden_size)
dims.append(output_dim)
self.layers = nn.ModuleList()
for i in range(len(dims)-1):
self.layers.append(nn.Linear(dims[i], dims[i+1]))
if activation == 'relu':
self.activation = nn.ReLU()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
self.sigmoid = nn.Sigmoid() if discrim else None
self.dropout = dropout
def forward(self, x):
for i in range(len(self.layers)):
x = self.layers[i](x)
if i != len(self.layers)-1:
x = self.activation(x)
if self.dropout != -1:
x = nn.Dropout(min(0.1, self.dropout/3) if i == 1 else self.dropout)(x)
elif self.sigmoid:
x = self.sigmoid(x)
return x
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, input_memory):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = input_memory
self.position = (self.position + 1) % self.capacity
def sample(self, n=100):
samples = random.sample(self.memory, n)
return torch.cat(samples)
def __len__(self):
return len(self.memory)
class LBEBM(nn.Module):
def __init__(self,
enc_past_size,
enc_dest_size,
enc_latent_size,
dec_size,
predictor_size,
fdim,
zdim,
sigma,
past_length,
future_length):
super(LBEBM, self).__init__()
self.zdim = zdim
self.sigma = sigma
self.nonlocal_pools = args.nonlocal_pools
non_local_dim = args.non_local_dim
non_local_phi_size = args.non_local_phi_size
non_local_g_size = args.non_local_g_size
non_local_theta_size = args.non_local_theta_size
self.encoder_past = MLP(input_dim=past_length*2, output_dim=fdim, hidden_size=enc_past_size)
self.encoder_dest = MLP(input_dim=len(args.sub_goal_indexes)*2, output_dim=fdim, hidden_size=enc_dest_size)
self.encoder_latent = MLP(input_dim=2*fdim, output_dim=2*zdim, hidden_size=enc_latent_size)
self.decoder = MLP(input_dim=fdim+zdim, output_dim=len(args.sub_goal_indexes)*2, hidden_size=dec_size)
self.predictor = MLP(input_dim=2*fdim, output_dim=2*(future_length), hidden_size=predictor_size)
self.non_local_theta = MLP(input_dim = fdim, output_dim = non_local_dim, hidden_size=non_local_theta_size)
self.non_local_phi = MLP(input_dim = fdim, output_dim = non_local_dim, hidden_size=non_local_phi_size)
self.non_local_g = MLP(input_dim = fdim, output_dim = fdim, hidden_size=non_local_g_size)
self.EBM = nn.Sequential(
nn.Linear(zdim + fdim, 200),
nn.GELU(),
nn.Linear(200, 200),
nn.GELU(),
nn.Linear(200, args.ny),
)
self.replay_memory = ReplayMemory(args.memory_size)
def forward(self, x, dest=None, mask=None, iteration=1, y=None):
ftraj = self.encoder_past(x)
if mask:
for _ in range(self.nonlocal_pools):
ftraj = self.non_local_social_pooling(ftraj, mask)
if self.training:
pcd = True if len(self.replay_memory) == args.memory_size else False
if pcd:
z_e_0 = self.replay_memory.sample(n=ftraj.size(0)).clone().detach().cuda()
else:
z_e_0 = sample_p_0(n=ftraj.size(0), nz=self.zdim)
z_e_k, _ = self.sample_langevin_prior_z(Variable(z_e_0), ftraj, pcd=pcd, verbose=(iteration % 1000==0))
for _z_e_k in z_e_k.clone().detach().cpu().split(1):
self.replay_memory.push(_z_e_k)
else:
z_e_0 = sample_p_0(n=ftraj.size(0), nz=self.zdim)
z_e_k, _ = self.sample_langevin_prior_z(Variable(z_e_0), ftraj, pcd=False, verbose=(iteration % 1000==0), y=y)
z_e_k = z_e_k.double().cuda()
if self.training:
dest_features = self.encoder_dest(dest)
features = torch.cat((ftraj, dest_features), dim=1)
latent = self.encoder_latent(features)
mu = latent[:, 0:self.zdim]
logvar = latent[:, self.zdim:]
var = logvar.mul(0.5).exp_()
eps = torch.DoubleTensor(var.size()).normal_().cuda()
z_g_k = eps.mul(var).add_(mu)
z_g_k = z_g_k.double().cuda()
if self.training:
decoder_input = torch.cat((ftraj, z_g_k), dim=1)
else:
decoder_input = torch.cat((ftraj, z_e_k), dim=1)
generated_dest = self.decoder(decoder_input)
if self.training:
generated_dest_features = self.encoder_dest(generated_dest)
prediction_features = torch.cat((ftraj, generated_dest_features), dim=1)
pred_future = self.predictor(prediction_features)
en_pos = self.ebm(z_g_k, ftraj).mean()
en_neg = self.ebm(z_e_k.detach().clone(), ftraj).mean()
cd = en_pos - en_neg
return generated_dest, mu, logvar, pred_future, cd, en_pos, en_neg, pcd
return generated_dest
def ebm(self, z, condition, cls_output=False):
condition_encoding = condition.detach().clone()
z_c = torch.cat((z, condition_encoding), dim=1)
conditional_neg_energy = self.EBM(z_c)
assert conditional_neg_energy.shape == (z.size(0), args.ny)
if cls_output:
return - conditional_neg_energy
else:
return - conditional_neg_energy.logsumexp(dim=1)
def sample_langevin_prior_z(self, z, condition, pcd=False, verbose=False, y=None):
z = z.clone().detach()
z.requires_grad = True
_e_l_steps = args.e_l_steps_pcd if pcd else args.e_l_steps
_e_l_step_size = args.e_l_step_size
for i in range(_e_l_steps):
if y is None:
en = self.ebm(z, condition)
else:
en = self.ebm(z, condition, cls_output=True)[range(z.size(0)), y]
z_grad = torch.autograd.grad(en.sum(), z)[0]
z.data = z.data - 0.5 * _e_l_step_size * _e_l_step_size * (z_grad + 1.0 / (args.e_prior_sig * args.e_prior_sig) * z.data)
if args.e_l_with_noise:
z.data += _e_l_step_size * torch.randn_like(z).data
if (i % 5 == 0 or i == _e_l_steps - 1) and verbose:
if y is None:
print('Langevin prior {:3d}/{:3d}: energy={:8.3f}'.format(i+1, _e_l_steps, en.sum().item()))
else:
logger.info('Conditional Langevin prior {:3d}/{:3d}: energy={:8.3f}'.format(i + 1, _e_l_steps, en.sum().item()))
z_grad_norm = z_grad.view(z_grad.size(0), -1).norm(dim=1).mean()
return z.detach(), z_grad_norm
def predict(self, past, generated_dest):
ftraj = self.encoder_past(past)
generated_dest_features = self.encoder_dest(generated_dest)
prediction_features = torch.cat((ftraj, generated_dest_features), dim=1)
interpolated_future = self.predictor(prediction_features)
return interpolated_future
def non_local_social_pooling(self, feat, mask):
theta_x = self.non_local_theta(feat)
phi_x = self.non_local_phi(feat).transpose(1,0)
f = torch.matmul(theta_x, phi_x)
f_weights = F.softmax(f, dim = -1)
f_weights = f_weights * mask
f_weights = F.normalize(f_weights, p=1, dim=1)
pooled_f = torch.matmul(f_weights, self.non_local_g(feat))
return pooled_f + feat
def train(model, optimizer, epoch, sub_goal_indexes):
model.train()
train_loss, total_dest_loss, total_future_loss = 0, 0, 0
criterion = nn.MSELoss()
for i, trajx in enumerate(tr_dl):
x = trajx['src'][:, :, :2]
y = trajx['trg'][:, :, :2]
x = x - trajx['src'][:, -1:, :2]
y = y - trajx['src'][:, -1:, :2]
x *= args.data_scale
y *= args.data_scale
x = x.double().cuda()
y = y.double().cuda()
x = x.view(-1, x.shape[1]*x.shape[2])
dest = y[:, sub_goal_indexes, :].detach().clone().view(y.size(0), -1)
future = y.view(y.size(0),-1)
dest_recon, mu, var, interpolated_future, cd, en_pos, en_neg, pcd = model.forward(x, dest=dest, mask=None, iteration=i)
optimizer.zero_grad()
dest_loss, future_loss, kld, subgoal_reg = calculate_loss(dest, dest_recon, mu, var, criterion, future, interpolated_future, sub_goal_indexes)
loss = args.dest_loss_coeff * dest_loss + args.future_loss_coeff * future_loss + args.kld_coeff * kld + cd + subgoal_reg
loss.backward()
train_loss += loss.item()
total_dest_loss += dest_loss.item()
total_future_loss += future_loss.item()
optimizer.step()
if (i+1) % args.print_log == 0:
logger.info('{:5d}/{:5d} '.format(i, epoch) +
'dest_loss={:8.6f} '.format(dest_loss.item()) +
'future_loss={:8.6f} '.format(future_loss.item()) +
'kld={:8.6f} '.format(kld.item()) +
'cd={:8.6f} '.format(cd.item()) +
'en_pos={:8.6f} '.format(en_pos.item()) +
'en_neg={:8.6f} '.format(en_neg.item()) +
'pcd={} '.format(pcd) +
'subgoal_reg={}'.format(subgoal_reg.detach().cpu().numpy())
)
return train_loss, total_dest_loss, total_future_loss
def test(model, dataloader, dataset, sub_goal_indexes, best_of_n=20):
model.eval()
total_dest_err = 0.
total_overall_err = 0.
for i, trajx in enumerate(dataloader):
x = trajx['src'][:, :, :2]
y = trajx['trg'][:, :, :2]
x = x - trajx['src'][:, -1:, :2]
y = y - trajx['src'][:, -1:, :2]
x *= args.data_scale
y *= args.data_scale
x = x.double().cuda()
y = y.double().cuda()
y = y.cpu().numpy()
x = x.view(-1, x.shape[1]*x.shape[2])
plan = y[:, sub_goal_indexes, :].reshape(y.shape[0],-1)
all_plan_errs = []
all_plans = []
for _ in range(best_of_n):
# dest_recon = model.forward(x, initial_pos, device=device)
# modes = torch.tensor(k % args.ny, device=device).long().repeat(batch_size)
plan_recon = model.forward(x, mask=None)
plan_recon = plan_recon.detach().cpu().numpy()
all_plans.append(plan_recon)
plan_err = np.linalg.norm(plan_recon - plan, axis=-1)
all_plan_errs.append(plan_err)
all_plan_errs = np.array(all_plan_errs)
all_plans = np.array(all_plans)
indices = np.argmin(all_plan_errs, axis=0)
best_plan = all_plans[indices, np.arange(x.shape[0]), :]
# FDE
best_dest_err = np.linalg.norm(best_plan[:, -2:] - plan[:, -2:], axis=1).sum()
best_plan = torch.DoubleTensor(best_plan).cuda()
interpolated_future = model.predict(x, best_plan)
interpolated_future = interpolated_future.detach().cpu().numpy()
# ADE
predicted_future = np.reshape(interpolated_future, (-1, args.future_length, 2))
overall_err = np.linalg.norm(y - predicted_future, axis=-1).mean(axis=-1).sum()
overall_err /= args.data_scale
best_dest_err /= args.data_scale
total_overall_err += overall_err
total_dest_err += best_dest_err
total_overall_err /= len(dataset)
total_dest_err /= len(dataset)
return total_overall_err, total_dest_err
def run_training(args):
model = LBEBM(
args.enc_past_size,
args.enc_dest_size,
args.enc_latent_size,
args.dec_size,
args.predictor_hidden_size,
args.fdim,
args.zdim,
args.sigma,
args.past_length,
args.future_length)
model = model.double().cuda()
optimizer = optim.Adam(model.parameters(), lr= args.learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step_size, gamma=args.lr_decay_gamma)
best_val_ade = 50
best_val_fde = 50
best_test_ade = 50
best_test_fde = 50
patience_epoch = 0
for epoch in range(args.num_epochs):
train_loss, dest_loss, overall_loss = train(model, optimizer, epoch, args.sub_goal_indexes)
overall_err, dest_err = test(model, val_dl, val_dataset, args.sub_goal_indexes, args.n_values)
test_overall_err, test_dest_err = test(model, test_dl, test_dataset, args.sub_goal_indexes, args.n_values)
patience_epoch += 1
if best_val_ade > overall_err:
patience_epoch = 0
best_val_ade = overall_err
best_val_fde = dest_err
if best_test_ade > test_overall_err:
best_test_ade = test_overall_err
best_test_fde = test_dest_err
logger.info("Train Loss {}".format(train_loss))
logger.info("Overall Loss {}".format(overall_loss))
logger.info("Dest Loss {}".format(dest_loss))
logger.info("Val ADE {}".format(overall_err))
logger.info("Val FDE {}".format(dest_err))
logger.info("Val Best ADE {}".format(best_val_ade))
logger.info("Val Best FDE {}".format(best_val_fde))
logger.info("Test ADE {}".format(test_overall_err))
logger.info("Test FDE {}".format(test_dest_err))
logger.info("Test Best ADE {}".format(best_test_ade))
logger.info("Test Best FDE {}".format(best_test_fde))
logger.info("----->learning rate {}".format(optimizer.param_groups[0]['lr']))
scheduler.step()
def run_eval(args):
model = LBEBM(
args.enc_past_size,
args.enc_dest_size,
args.enc_latent_size,
args.dec_size,
args.predictor_hidden_size,
args.fdim,
args.zdim,
args.sigma,
args.past_length,
args.future_length)
model = model.double().cuda()
ckpt = torch.load(args.model_path, map_location=torch.device('cuda'))
model.load_state_dict(ckpt['model_state_dict'])
overall_err, dest_err = test(model, test_dl, test_dataset, args.sub_goal_indexes, args.n_values)
logger.info("Test ADE {}".format(overall_err))
logger.info("Test FDE {}".format(dest_err))
if args.model_path:
run_eval(args)
else:
run_training(args)
if __name__ == '__main__':
main()