-
Notifications
You must be signed in to change notification settings - Fork 207
/
finetune_integration.py
798 lines (698 loc) · 25.5 KB
/
finetune_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
# %%
import copy
import gc
import json
import os
from pathlib import Path
import sys
import time
import traceback
from typing import List, Tuple, Dict, Union, Optional
import warnings
import torch
from anndata import AnnData
import scanpy as sc
import scvi
import numpy as np
import wandb
from scipy.sparse import issparse
import matplotlib.pyplot as plt
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from torchtext.vocab import Vocab
from torchtext._torchtext import (
Vocab as VocabPybind,
)
from scgpt.tokenizer.gene_tokenizer import GeneVocab
sys.path.append("../")
import scgpt as scg
from scgpt.model import TransformerModel, AdversarialDiscriminator
from scgpt.tokenizer import tokenize_and_pad_batch, random_mask_value
from scgpt.loss import (
masked_mse_loss,
masked_relative_error,
criterion_neg_log_bernoulli,
)
from scgpt.preprocess import Preprocessor
from scgpt import SubsetsBatchSampler
from scgpt.utils import set_seed, category_str2int, eval_scib_metrics
sc.set_figure_params(figsize=(4, 4))
os.environ["KMP_WARNINGS"] = "off"
# os.environ["WANDB_MODE"] = "offline"
hyperparameter_defaults = dict(
seed=42,
dataset_name="PBMC_10K",
do_train=True,
load_model="save/scGPT_bc",
mask_ratio=0.4,
epochs=30,
n_bins=51,
GEPC=True, # Masked value prediction for cell embedding
ecs_thres=0.8, # Elastic cell similarity objective, 0.0 to 1.0, 0.0 to disable
dab_weight=1.0,
lr=1e-4,
batch_size=64,
layer_size=128,
nlayers=4,
nhead=4,
# if load model, batch_size, layer_size, nlayers, nhead will be ignored
dropout=0.2,
schedule_ratio=0.9, # ratio of epochs for learning rate schedule
save_eval_interval=5,
log_interval=100,
fast_transformer=True,
pre_norm=False,
amp=True, # Automatic Mixed Precision
)
run = wandb.init(
config=hyperparameter_defaults,
project="scGPT",
reinit=True,
settings=wandb.Settings(start_method="fork"),
)
config = wandb.config
print(config)
set_seed(config.seed)
# %%
# settings for input and preprocessing
pad_token = "<pad>"
special_tokens = [pad_token, "<cls>", "<eoc>"]
mask_ratio = config.mask_ratio
mask_value = -1
pad_value = -2
n_input_bins = config.n_bins
n_hvg = 1200 # number of highly variable genes
max_seq_len = n_hvg + 1
per_seq_batch_sample = True
DSBN = True # Domain-spec batchnorm
explicit_zero_prob = True # whether explicit bernoulli for zeros
# %%
dataset_name = config.dataset_name
save_dir = Path(f"./save/dev_{dataset_name}-{time.strftime('%b%d-%H-%M')}/")
save_dir.mkdir(parents=True, exist_ok=True)
print(f"save to {save_dir}")
# save the whole script to the dir
os.system(f"cp {__file__} {save_dir}")
logger = scg.logger
scg.utils.add_file_handler(logger, save_dir / "run.log")
# %% [markdown]
# ## Loading and preparing data
if dataset_name == "PBMC_10K":
adata = scvi.data.pbmc_dataset() # 11990 × 3346
ori_batch_col = "batch"
adata.obs["celltype"] = adata.obs["str_labels"].astype("category")
adata.var = adata.var.set_index("gene_symbols")
data_is_raw = True
# %%
# make the batch category column
adata.obs["str_batch"] = adata.obs[ori_batch_col].astype(str)
batch_id_labels = adata.obs["str_batch"].astype("category").cat.codes.values
adata.obs["batch_id"] = batch_id_labels
adata.var["gene_name"] = adata.var.index.tolist()
if config.load_model is not None:
model_dir = Path(config.load_model)
model_config_file = model_dir / "args.json"
model_file = model_dir / "best_model.pt"
vocab_file = model_dir / "vocab.json"
vocab = GeneVocab.from_file(vocab_file)
for s in special_tokens:
if s not in vocab:
vocab.append_token(s)
adata.var["id_in_vocab"] = [
1 if gene in vocab else -1 for gene in adata.var["gene_name"]
]
gene_ids_in_vocab = np.array(adata.var["id_in_vocab"])
logger.info(
f"match {np.sum(gene_ids_in_vocab >= 0)}/{len(gene_ids_in_vocab)} genes "
f"in vocabulary of size {len(vocab)}."
)
adata = adata[:, adata.var["id_in_vocab"] >= 0]
# model
with open(model_config_file, "r") as f:
model_configs = json.load(f)
logger.info(
f"Resume model from {model_file}, the model args will be overriden by the "
f"config {model_config_file}."
)
embsize = model_configs["embsize"]
nhead = model_configs["nheads"]
d_hid = model_configs["d_hid"]
nlayers = model_configs["nlayers"]
n_layers_cls = model_configs["n_layers_cls"]
else:
embsize = config.layer_size
nhead = config.nhead
nlayers = config.nlayers
d_hid = config.layer_size
# %%
# set up the preprocessor, use the args to config the workflow
preprocessor = Preprocessor(
use_key="X", # the key in adata.layers to use as raw data
filter_gene_by_counts=3, # step 1
filter_cell_by_counts=False, # step 2
normalize_total=1e4, # 3. whether to normalize the raw data and to what sum
result_normed_key="X_normed", # the key in adata.layers to store the normalized data
log1p=data_is_raw, # 4. whether to log1p the normalized data
result_log1p_key="X_log1p",
subset_hvg=n_hvg, # 5. whether to subset the raw data to highly variable genes
hvg_flavor="seurat_v3" if data_is_raw else "cell_ranger",
binning=config.n_bins, # 6. whether to bin the raw data and to what number of bins
result_binned_key="X_binned", # the key in adata.layers to store the binned data
)
preprocessor(adata, batch_key="str_batch" if dataset_name != "heart_cell" else None)
# %%
if per_seq_batch_sample:
# sort the adata by batch_id in advance
adata_sorted = adata[adata.obs["batch_id"].argsort()].copy()
# %% [markdown]
# ## Tokenize input
# %%
input_layer_key = "X_binned"
all_counts = (
adata.layers[input_layer_key].A
if issparse(adata.layers[input_layer_key])
else adata.layers[input_layer_key]
)
genes = adata.var["gene_name"].tolist()
celltypes_labels = adata.obs["celltype"].tolist() # make sure count from 0
num_types = len(set(celltypes_labels))
celltypes_labels = np.array(celltypes_labels)
batch_ids = adata.obs["batch_id"].tolist()
num_batch_types = len(set(batch_ids))
batch_ids = np.array(batch_ids)
(
train_data,
valid_data,
train_celltype_labels,
valid_celltype_labels,
train_batch_labels,
valid_batch_labels,
) = train_test_split(
all_counts, celltypes_labels, batch_ids, test_size=0.1, shuffle=True
)
# %%
if config.load_model is None:
vocab = Vocab(
VocabPybind(genes + special_tokens, None)
) # bidirectional lookup [gene <-> int]
vocab.set_default_index(vocab["<pad>"])
gene_ids = np.array(vocab(genes), dtype=int)
# %%
tokenized_train = tokenize_and_pad_batch(
train_data,
gene_ids,
max_len=max_seq_len,
vocab=vocab,
pad_token=pad_token,
pad_value=pad_value,
append_cls=True, # append <cls> token at the beginning
include_zero_gene=True,
)
tokenized_valid = tokenize_and_pad_batch(
valid_data,
gene_ids,
max_len=max_seq_len,
vocab=vocab,
pad_token=pad_token,
pad_value=pad_value,
append_cls=True,
include_zero_gene=True,
)
logger.info(
f"train set number of samples: {tokenized_train['genes'].shape[0]}, "
f"\n\t feature length: {tokenized_train['genes'].shape[1]}"
)
logger.info(
f"valid set number of samples: {tokenized_valid['genes'].shape[0]}, "
f"\n\t feature length: {tokenized_valid['genes'].shape[1]}"
)
# %%
def prepare_data(sort_seq_batch=False) -> Tuple[Dict[str, torch.Tensor]]:
masked_values_train = random_mask_value(
tokenized_train["values"],
mask_ratio=mask_ratio,
mask_value=mask_value,
pad_value=pad_value,
)
masked_values_valid = random_mask_value(
tokenized_valid["values"],
mask_ratio=mask_ratio,
mask_value=mask_value,
pad_value=pad_value,
)
print(
f"random masking at epoch {epoch:3d}, ratio of masked values in train: ",
f"{(masked_values_train == mask_value).sum() / (masked_values_train - pad_value).count_nonzero():.4f}",
)
input_gene_ids_train, input_gene_ids_valid = (
tokenized_train["genes"],
tokenized_valid["genes"],
)
input_values_train, input_values_valid = masked_values_train, masked_values_valid
target_values_train, target_values_valid = (
tokenized_train["values"],
tokenized_valid["values"],
)
tensor_batch_labels_train = torch.from_numpy(train_batch_labels).long()
tensor_batch_labels_valid = torch.from_numpy(valid_batch_labels).long()
if sort_seq_batch:
train_sort_ids = np.argsort(train_batch_labels)
input_gene_ids_train = input_gene_ids_train[train_sort_ids]
input_values_train = input_values_train[train_sort_ids]
target_values_train = target_values_train[train_sort_ids]
tensor_batch_labels_train = tensor_batch_labels_train[train_sort_ids]
valid_sort_ids = np.argsort(valid_batch_labels)
input_gene_ids_valid = input_gene_ids_valid[valid_sort_ids]
input_values_valid = input_values_valid[valid_sort_ids]
target_values_valid = target_values_valid[valid_sort_ids]
tensor_batch_labels_valid = tensor_batch_labels_valid[valid_sort_ids]
train_data_pt = {
"gene_ids": input_gene_ids_train,
"values": input_values_train,
"target_values": target_values_train,
"batch_labels": tensor_batch_labels_train,
}
valid_data_pt = {
"gene_ids": input_gene_ids_valid,
"values": input_values_valid,
"target_values": target_values_valid,
"batch_labels": tensor_batch_labels_valid,
}
return train_data_pt, valid_data_pt
# dataset
class SeqDataset(Dataset):
def __init__(self, data: Dict[str, torch.Tensor]):
self.data = data
def __len__(self):
return self.data["gene_ids"].shape[0]
def __getitem__(self, idx):
return {k: v[idx] for k, v in self.data.items()}
# data_loader
def prepare_dataloader(
data_pt: Dict[str, torch.Tensor],
batch_size: int,
shuffle: bool = False,
intra_domain_shuffle: bool = False,
drop_last: bool = False,
num_workers: int = 0,
) -> DataLoader:
dataset = SeqDataset(data_pt)
if per_seq_batch_sample:
# find the indices of samples in each seq batch
subsets = []
batch_labels_array = data_pt["batch_labels"].numpy()
for batch_label in np.unique(batch_labels_array):
batch_indices = np.where(batch_labels_array == batch_label)[0].tolist()
subsets.append(batch_indices)
data_loader = DataLoader(
dataset=dataset,
batch_sampler=SubsetsBatchSampler(
subsets,
batch_size,
intra_subset_shuffle=intra_domain_shuffle,
inter_subset_shuffle=shuffle,
drop_last=drop_last,
),
num_workers=num_workers,
pin_memory=True,
)
return data_loader
data_loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
num_workers=num_workers,
pin_memory=True,
)
return data_loader
# %% [markdown]
# # Create and finetune scGPT
# %%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ntokens = len(vocab) # size of vocabulary
model = TransformerModel(
ntokens,
embsize,
nhead,
d_hid,
nlayers,
vocab=vocab,
dropout=config.dropout,
pad_token=pad_token,
pad_value=pad_value,
do_mvc=config.GEPC,
do_dab=True,
use_batch_labels=True,
num_batch_labels=num_batch_types,
domain_spec_batchnorm=DSBN,
n_input_bins=n_input_bins,
ecs_threshold=config.ecs_thres,
explicit_zero_prob=explicit_zero_prob,
use_fast_transformer=config.fast_transformer,
pre_norm=config.pre_norm,
)
if config.load_model is not None:
try:
model.load_state_dict(torch.load(model_file))
logger.info(f"Loading all model params from {model_file}")
except:
# only load params that are in the model and match the size
model_dict = model.state_dict()
pretrained_dict = torch.load(model_file)
pretrained_dict = {
k: v
for k, v in pretrained_dict.items()
if k in model_dict and v.shape == model_dict[k].shape
}
for k, v in pretrained_dict.items():
logger.info(f"Loading params {k} with shape {v.shape}")
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.to(device)
wandb.watch(model)
criterion = masked_mse_loss
criterion_dab = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=config.lr, eps=1e-4 if config.amp else 1e-8
)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=config.schedule_ratio)
scaler = torch.cuda.amp.GradScaler(enabled=config.amp)
def train(model: nn.Module, loader: DataLoader) -> None:
"""
Train the model for one epoch.
"""
model.train()
total_loss, total_mse, total_gepc = 0.0, 0.0, 0.0
total_error = 0.0
log_interval = config.log_interval
start_time = time.time()
num_batches = len(loader)
for batch, batch_data in enumerate(loader):
input_gene_ids = batch_data["gene_ids"].to(device)
input_values = batch_data["values"].to(device)
target_values = batch_data["target_values"].to(device)
batch_labels = batch_data["batch_labels"].to(device)
src_key_padding_mask = input_gene_ids.eq(vocab[pad_token])
with torch.cuda.amp.autocast(enabled=config.amp):
output_dict = model(
input_gene_ids,
input_values,
src_key_padding_mask=src_key_padding_mask,
batch_labels=batch_labels if DSBN else None,
MVC=config.GEPC,
ECS=config.ecs_thres > 0,
)
masked_positions = input_values.eq(mask_value) # the postions to predict
loss = loss_mse = criterion(
output_dict["mlm_output"], target_values, masked_positions
)
metrics_to_log = {"train/mse": loss_mse.item()}
if explicit_zero_prob:
loss_zero_log_prob = criterion_neg_log_bernoulli(
output_dict["mlm_zero_probs"], target_values, masked_positions
)
loss = loss + loss_zero_log_prob
metrics_to_log.update({"train/nzlp": loss_zero_log_prob.item()})
if config.GEPC:
loss_gepc = criterion(
output_dict["mvc_output"], target_values, masked_positions
)
loss = loss + loss_gepc
metrics_to_log.update({"train/mvc": loss_gepc.item()})
if config.GEPC and explicit_zero_prob:
loss_gepc_zero_log_prob = criterion_neg_log_bernoulli(
output_dict["mvc_zero_probs"], target_values, masked_positions
)
loss = loss + loss_gepc_zero_log_prob
metrics_to_log.update(
{"train/mvc_nzlp": loss_gepc_zero_log_prob.item()}
)
if config.ecs_thres > 0:
loss_ecs = 10 * output_dict["loss_ecs"]
loss = loss + loss_ecs
metrics_to_log.update({"train/ecs": loss_ecs.item()})
loss_dab = criterion_dab(output_dict["dab_output"], batch_labels)
loss = loss + config.dab_weight * loss_dab
metrics_to_log.update({"train/dab": loss_dab.item()})
model.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
torch.nn.utils.clip_grad_norm_(
model.parameters(),
1.0,
error_if_nonfinite=False if scaler.is_enabled() else True,
)
if len(w) > 0:
logger.warning(
f"Found infinite gradient. This may be caused by the gradient "
f"scaler. The current scale is {scaler.get_scale()}. This warning "
"can be ignored if no longer occurs after autoscaling of the scaler."
)
scaler.step(optimizer)
scaler.update()
wandb.log(metrics_to_log)
with torch.no_grad():
mre = masked_relative_error(
output_dict["mlm_output"], target_values, masked_positions
)
total_loss += loss.item()
total_mse += loss_mse.item()
total_gepc += loss_gepc.item() if config.GEPC else 0.0
total_error += mre.item()
if batch % log_interval == 0 and batch > 0:
lr = scheduler.get_last_lr()[0]
ms_per_batch = (time.time() - start_time) * 1000 / log_interval
cur_loss = total_loss / log_interval
cur_mse = total_mse / log_interval
cur_gepc = total_gepc / log_interval if config.GEPC else 0.0
cur_error = total_error / log_interval
# ppl = math.exp(cur_loss)
logger.info(
f"| epoch {epoch:3d} | {batch:3d}/{num_batches:3d} batches | "
f"lr {lr:05.4f} | ms/batch {ms_per_batch:5.2f} | "
f"loss {cur_loss:5.2f} | mse {cur_mse:5.2f} | mre {cur_error:5.2f} |"
+ (f"gepc {cur_gepc:5.2f} |" if config.GEPC else "")
)
total_loss = 0
total_mse = 0
total_gepc = 0
total_error = 0
start_time = time.time()
def define_wandb_metrcis():
wandb.define_metric("valid/mse", summary="min", step_metric="epoch")
wandb.define_metric("valid/mre", summary="min", step_metric="epoch")
wandb.define_metric("valid/dab", summary="min", step_metric="epoch")
wandb.define_metric("valid/sum_mse_dab", summary="min", step_metric="epoch")
wandb.define_metric("test/avg_bio", summary="max")
def evaluate(model: nn.Module, loader: DataLoader) -> float:
"""
Evaluate the model on the evaluation data.
"""
model.eval()
total_loss = 0.0
total_error = 0.0
total_dab = 0.0
total_num = 0
with torch.no_grad():
for batch_data in loader:
input_gene_ids = batch_data["gene_ids"].to(device)
input_values = batch_data["values"].to(device)
target_values = batch_data["target_values"].to(device)
batch_labels = batch_data["batch_labels"].to(device)
src_key_padding_mask = input_gene_ids.eq(vocab[pad_token])
with torch.cuda.amp.autocast(enabled=config.amp):
output_dict = model(
input_gene_ids,
input_values,
src_key_padding_mask=src_key_padding_mask,
batch_labels=batch_labels if DSBN else None,
)
output_values = output_dict["mlm_output"]
masked_positions = input_values.eq(mask_value)
loss = criterion(output_values, target_values, masked_positions)
loss_dab = criterion_dab(output_dict["dab_output"], batch_labels)
total_loss += loss.item() * len(input_gene_ids)
total_error += masked_relative_error(
output_values, target_values, masked_positions
).item() * len(input_gene_ids)
total_dab += loss_dab.item() * len(input_gene_ids)
total_num += len(input_gene_ids)
wandb.log(
{
"valid/mse": total_loss / total_num,
"valid/mre": total_error / total_num,
"valid/dab": total_dab / total_num,
"valid/sum_mse_dab": (total_loss + config.dab_weight * total_dab)
/ total_num,
"epoch": epoch,
},
)
return total_loss / total_num, total_error / total_num
def eval_testdata(
model: nn.Module,
adata_t: AnnData,
include_types: List[str] = ["cls"],
) -> Optional[Dict]:
"""evaluate the model on test dataset of adata_t"""
model.eval()
# copy adata_t to avoid reuse previously computed results stored in adata_t
adata_t = adata_t.copy()
all_counts = (
adata_t.layers[input_layer_key].A
if issparse(adata_t.layers[input_layer_key])
else adata_t.layers[input_layer_key]
)
celltypes_labels = adata_t.obs["celltype"].tolist()
celltypes_labels = np.array(celltypes_labels)
batch_ids = adata_t.obs["batch_id"].tolist()
batch_ids = np.array(batch_ids)
# Evaluate cls cell embeddings
if "cls" in include_types:
logger.info("Evaluating cls cell embeddings")
tokenized_all = tokenize_and_pad_batch(
all_counts,
gene_ids,
max_len=max_seq_len,
vocab=vocab,
pad_token=pad_token,
pad_value=pad_value,
append_cls=True, # append <cls> token at the beginning
include_zero_gene=True,
)
all_gene_ids, all_values = tokenized_all["genes"], tokenized_all["values"]
src_key_padding_mask = all_gene_ids.eq(vocab[pad_token])
with torch.no_grad(), torch.cuda.amp.autocast(enabled=config.amp):
cell_embeddings = model.encode_batch(
all_gene_ids,
all_values.float(),
src_key_padding_mask=src_key_padding_mask,
batch_size=config.batch_size,
batch_labels=torch.from_numpy(batch_ids).long() if DSBN else None,
time_step=0,
return_np=True,
)
cell_embeddings = cell_embeddings / np.linalg.norm(
cell_embeddings, axis=1, keepdims=True
)
adata_t.obsm["X_scGPT"] = cell_embeddings
results = {}
try:
results = eval_scib_metrics(adata_t)
except Exception as e:
traceback.print_exc()
logger.error(e)
sc.pp.neighbors(adata_t, use_rep="X_scGPT")
sc.tl.umap(adata_t, min_dist=0.3)
fig = sc.pl.umap(
adata_t,
color=["str_batch"],
title=[f"batch, avg_bio = {results.get('avg_bio', 0.0):.4f}"],
frameon=False,
return_fig=True,
show=False,
)
results["batch_umap"] = fig
sc.pp.neighbors(adata_t, use_rep="X_scGPT")
sc.tl.umap(adata_t, min_dist=0.3)
fig = sc.pl.umap(
adata_t,
color=["celltype"],
title=[
f"celltype, avg_bio = {results.get('avg_bio', 0.0):.4f}",
],
frameon=False,
return_fig=True,
show=False,
)
results["celltype_umap"] = fig
if len(include_types) == 1:
return results
# %%
best_val_loss = float("inf")
best_avg_bio = 0.0
best_model = None
define_wandb_metrcis()
for epoch in range(1, config.epochs + 1):
epoch_start_time = time.time()
train_data_pt, valid_data_pt = prepare_data(sort_seq_batch=per_seq_batch_sample)
train_loader = prepare_dataloader(
train_data_pt,
batch_size=config.batch_size,
shuffle=False,
intra_domain_shuffle=True,
drop_last=False,
)
valid_loader = prepare_dataloader(
valid_data_pt,
batch_size=config.batch_size,
shuffle=False,
intra_domain_shuffle=False,
drop_last=False,
)
if config.do_train:
train(
model,
loader=train_loader,
)
val_loss, val_mre = evaluate(
model,
loader=valid_loader,
)
elapsed = time.time() - epoch_start_time
logger.info("-" * 89)
logger.info(
f"| end of epoch {epoch:3d} | time: {elapsed:5.2f}s | "
f"valid loss/mse {val_loss:5.4f} | mre {val_mre:5.4f}"
)
logger.info("-" * 89)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = copy.deepcopy(model)
best_model_epoch = epoch
logger.info(f"Best model with score {best_val_loss:5.4f}")
if epoch % config.save_eval_interval == 0 or epoch == config.epochs:
logger.info(f"Saving model to {save_dir}")
torch.save(best_model.state_dict(), save_dir / f"model_e{best_model_epoch}.pt")
# eval on testdata
results = eval_testdata(
best_model,
adata_t=adata_sorted if per_seq_batch_sample else adata,
include_types=["cls"],
)
results["batch_umap"].savefig(
save_dir / f"embeddings_batch_umap[cls]_e{best_model_epoch}.png", dpi=300
)
results["celltype_umap"].savefig(
save_dir / f"embeddings_celltype_umap[cls]_e{best_model_epoch}.png", dpi=300
)
metrics_to_log = {"test/" + k: v for k, v in results.items()}
metrics_to_log["test/batch_umap"] = wandb.Image(
str(save_dir / f"embeddings_batch_umap[cls]_e{best_model_epoch}.png"),
caption=f"celltype avg_bio epoch {best_model_epoch}",
)
metrics_to_log["test/celltype_umap"] = wandb.Image(
str(save_dir / f"embeddings_celltype_umap[cls]_e{best_model_epoch}.png"),
caption=f"celltype avg_bio epoch {best_model_epoch}",
)
metrics_to_log["test/best_model_epoch"] = best_model_epoch
wandb.log(metrics_to_log)
wandb.log({"avg_bio": results.get("avg_bio", 0.0)})
scheduler.step()
# %%
# save the best model
torch.save(best_model.state_dict(), save_dir / "best_model.pt")
# %% [markdown]
# ## Gene embeddings
# %%
artifact = wandb.Artifact(f"best_model", type="model")
glob_str = os.path.join(save_dir, "best_model.pt")
artifact.add_file(glob_str)
run.log_artifact(artifact)
run.finish()
wandb.finish()
gc.collect()