Pre-trained Diffusion Models for Plug-and-Play Medical Image Enhancement
- install
torch=1.3.1
andtorchvision=0.14.1
based on pytorch guidance - install guided diffusion
Resize each 2D slice to 256x256x3
and save it as a PNG
image.
- CT model
MODEL_FLAGS="--image_size 256 --num_channels 64 --num_res_blocks 3 --num_heads 1"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 16"
python scripts/image_train.py --data_dir ../NormalDose_png_data_path --log_dir ./work_dir/CT256 $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
- Heart MR model
MODEL_FLAGS="--image_size 256 --num_channels 64 --num_res_blocks 3 --num_heads 1"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 16"
python scripts/image_train.py --data_dir ../ACDC-MMs_png_data_path --log_dir ./work_dir/MR256 $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
Download the checkpoints here and put them to ckpt
folder
- CT model
Run
python CT_main.py
- Heart MR model
Run
python MR_main.py
We thank the IDDPM, guided-diffusion, and DDNM as their implementation served as the basis for our work. We highly appreciate Jiwen Yu, who provided invaluable guidance and support. We also thank the organizers of AAPM Low Dose CT Grand Challenge, ACDC, MMs, and CMRxMothion for making the datasets publicly available.
@InProceedings{DPM-MedImgEnhance,
author="Ma, Jun
and Zhu, Yuanzhi
and You, Chenyu
and Wang, Bo",
editor="Greenspan, Hayit
and Madabhushi, Anant
and Mousavi, Parvin
and Salcudean, Septimiu
and Duncan, James
and Syeda-Mahmood, Tanveer
and Taylor, Russell",
title="Pre-trained Diffusion Models for Plug-and-Play Medical Image Enhancement",
booktitle="Medical Image Computing and Computer Assisted Intervention -- MICCAI 2023",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="3--13",
}