-
Notifications
You must be signed in to change notification settings - Fork 4
/
pretrain.py
251 lines (199 loc) · 8.53 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) 2023 Shihao Ma, Haotian Cui, WangLab @ U of T
# This source code is modified from https://github.com/yuyangw/MolCLR
# under MIT License. The original license is included below:
# ========================================================================
# MIT License
# Copyright (c) 2021 Yuyang Wang
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import shutil
import sys
import torch
import yaml
import numpy as np
from datetime import datetime
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingLR
from utils.nt_xent import NTXentLoss
apex_support = False
try:
sys.path.append("./apex")
from apex import amp
apex_support = True
except:
print(
"Please install apex for mixed precision training from: https://github.com/NVIDIA/apex"
)
apex_support = False
def _save_config_file(model_checkpoints_folder):
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy(args.config, os.path.join(model_checkpoints_folder, "config.yaml"))
class PreTrain(object):
def __init__(self, dataset, config):
self.config = config
self.device = self._get_device()
dir_name = datetime.now().strftime("%b%d_%H-%M-%S")
log_dir = os.path.join("ckpt", dir_name)
self.writer = SummaryWriter(log_dir=log_dir)
self.dataset = dataset
self.nt_xent_criterion = NTXentLoss(
self.device, config["batch_size"], **config["loss"]
)
def _get_device(self):
if torch.cuda.is_available() and self.config["gpu"] != "cpu":
device = self.config["gpu"]
torch.cuda.set_device(device)
else:
device = "cpu"
print("Running on:", device)
return device
def _step(self, model, xis, xjs, n_iter):
# get the representations and the projections
ris, zis = model(xis) # [N,C]
# get the representations and the projections
rjs, zjs = model(xjs) # [N,C]
# normalize projection feature vectors
zis = F.normalize(zis, dim=1)
zjs = F.normalize(zjs, dim=1)
loss = self.nt_xent_criterion(zis, zjs)
return loss
def train(self):
train_loader, valid_loader = self.dataset.get_data_loaders()
from models.agile_pretrain import AGILE
model = AGILE(**self.config["model"]).to(self.device)
model = self._load_pre_trained_weights(model)
print(model)
optimizer = torch.optim.Adam(
model.parameters(),
self.config["init_lr"],
weight_decay=eval(self.config["weight_decay"]),
)
scheduler = CosineAnnealingLR(
optimizer,
T_max=self.config["epochs"] - self.config["warm_up"],
eta_min=0,
last_epoch=-1,
)
if apex_support and self.config["fp16_precision"]:
model, optimizer = amp.initialize(
model, optimizer, opt_level="O2", keep_batchnorm_fp32=True
)
model_checkpoints_folder = os.path.join(self.writer.log_dir, "checkpoints")
# save config file
_save_config_file(model_checkpoints_folder)
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
for epoch_counter in range(self.config["epochs"]):
for bn, (xis, xjs) in enumerate(train_loader):
optimizer.zero_grad()
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, n_iter)
if n_iter % self.config["log_every_n_steps"] == 0:
self.writer.add_scalar("train_loss", loss, global_step=n_iter)
self.writer.add_scalar(
"cosine_lr_decay",
scheduler.get_last_lr()[0],
global_step=n_iter,
)
print("Epoch:", epoch_counter, "Iteration:", bn, "Train loss:",loss.item())
if apex_support and self.config["fp16_precision"]:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
n_iter += 1
# validate the model if requested
if epoch_counter % self.config["eval_every_n_epochs"] == 0:
valid_loss = self._validate(model, valid_loader)
print("Epoch:", epoch_counter, "Iteration:", bn, "Valid loss:", valid_loss)
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(
model.state_dict(),
os.path.join(model_checkpoints_folder, "model.pth"),
)
self.writer.add_scalar(
"validation_loss", valid_loss, global_step=valid_n_iter
)
valid_n_iter += 1
if (epoch_counter + 1) % self.config["save_every_n_epochs"] == 0:
torch.save(
model.state_dict(),
os.path.join(
model_checkpoints_folder,
"model_{}.pth".format(str(epoch_counter)),
),
)
# warmup for the first few epochs
if epoch_counter >= self.config["warm_up"]:
scheduler.step()
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join(
"./ckpt", self.config["load_model"], "checkpoints"
)
state_dict = torch.load(
os.path.join(checkpoints_folder, "model.pth"),
map_location=self.device,
)
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
def _validate(self, model, valid_loader):
# validation steps
with torch.no_grad():
model.eval()
valid_loss = 0.0
counter = 0
for (xis, xjs) in valid_loader:
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, counter)
valid_loss += loss.item()
counter += 1
valid_loss /= counter
model.train()
return valid_loss
def main(config):
if config["aug"] == "node":
from dataset.dataset import MoleculeDatasetWrapper
elif config["aug"] == "subgraph":
from dataset.dataset_subgraph import MoleculeDatasetWrapper
elif config["aug"] == "mix":
from dataset.dataset_mix import MoleculeDatasetWrapper
else:
raise ValueError("Not defined molecule augmentation!")
dataset = MoleculeDatasetWrapper(config["batch_size"], **config["dataset"])
agile_pretrain = PreTrain(dataset, config)
agile_pretrain.train()
print(f"Training finished. Checkpoints saved in {agile_pretrain.writer.log_dir}.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="Path to the config file.")
args = parser.parse_args()
config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
print(config)
main(config)