Skip to content

predicting chemical properties with transformers & GCN

Notifications You must be signed in to change notification settings

boopthesnoot/chemfusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

chemfusion: fusing graph and text representations of molecules for property prediction

used parts of the code from: https://github.com/MolecularAI/Chemformer

usage: specify parameters, datasets and models used in graph/config.yaml and run python graph/main.py with flags --vocab_path to specify the vocabulary for the NLP part and --model_path to specify path to the pretrained chemformer model (https://az.app.box.com/s/7eci3nd9vy0xplqniitpk02rbg9q2zcq)

Results on freesolv:

Regression Model Fusion Dataset RMSE Mean (test) RMSE Std (test) RMSE (test) R2 (test) Flags
Transformer + GCN wo Reconstruction Concat -> 2 dense layers with ReLU freesolv 1.450 0.221 1.450 +- 0.221 0.901 +- 0.030 run.n_runs=10
Transformer + GCN w/ Reconstruction Concat -> 2 dense layers with ReLU freesolv 1.451 0.103 1.451 +- 0.103 0.903 +- 0.014 run.n_runs=10
GCN wo Reconstruction freesolv 1.803 0.060 1.803 +- 0.060 0.849 +- 0.010 run.n_runs=10
GCN w/ Reconstruction freesolv 1.904 0.044 1.904 +- 0.044 0.833 +- 0.008 run.n_runs=10
Transformer wo Reconstruction freesolv 2.071 0.291 2.071 +- 0.291 0.796 +- 0.057 run.n_runs=10
Transformer w/ Reconstruction freesolv 2.104 0.381 2.104 +- 0.381 0.787 +- 0.084 run.n_runs=10

About

predicting chemical properties with transformers & GCN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages