forked from jveitchmichaelis/edgetpu-yolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_coco.py
39 lines (30 loc) · 1.36 KB
/
eval_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import json
import argparse
import os
import glob
import logging
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("COCOEval")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Evaluate a COCO prediction file")
parser.add_argument("--coco_path", type=str, help="Path to COCO 2017 Val folder", required=True)
parser.add_argument("--pred_path", type=str, help="Path to prediction json", required=True)
parser.add_argument("--gt_path", type=str, help="Path to ground truth json", required=True)
args = parser.parse_args()
coco_glob = os.path.join(args.coco_path, "*.jpg")
images = glob.glob(coco_glob)
logger.info("Looking for: {}".format(coco_glob))
ids = [int(os.path.basename(i).split('.')[0]) for i in images]
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
anno = COCO(args.gt_path) # init annotations api
pred = anno.loadRes(args.pred_path) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
eval.params.imgIds = ids
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
logger.info("mAP: {}".format(map))
logger.info("mAP50: {}".format(map50))