forked from jveitchmichaelis/edgetpu-yolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
163 lines (116 loc) · 5.62 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
import argparse
import logging
import time
from pathlib import Path
import glob
import json
import numpy as np
from tqdm import tqdm
import cv2
import yaml
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
from edgetpumodel import EdgeTPUModel
from utils import resize_and_pad, get_image_tensor, save_one_json, coco80_to_coco91_class
#from pycoral.pybind._pywrap_coral import SetVerbosity as set_verbosity
#set_verbosity(10)
if __name__ == "__main__":
parser = argparse.ArgumentParser("EdgeTPU test runner")
parser.add_argument("--model", "-m", help="weights file", required=True)
parser.add_argument("--bench_speed", action='store_true', help="run speed test on dummy data")
parser.add_argument("--bench_image", action='store_true', help="run detection test")
parser.add_argument("--bench_airsim", action='store_true', help="run detection on airsim")
parser.add_argument("--conf_thresh", type=float, default=0.25, help="model confidence threshold")
parser.add_argument("--iou_thresh", type=float, default=0.45, help="NMS IOU threshold")
parser.add_argument("--names", type=str, default='data/coco.yaml', help="Names file")
parser.add_argument("--image", "-i", type=str, help="Image file to run detection on")
parser.add_argument("--device", type=int, default=0, help="Image capture device to run live detection")
parser.add_argument("--stream", action='store_true', help="Process a stream")
parser.add_argument("--bench_coco", action='store_true', help="Process a stream")
parser.add_argument("--coco_path", type=str, help="Path to COCO 2017 Val folder")
parser.add_argument("--quiet","-q", action='store_true', help="Disable logging (except errors)")
args = parser.parse_args()
if args.quiet:
logging.disable(logging.CRITICAL)
logger.disabled = True
if args.stream and args.image:
logger.error("Please select either an input image or a stream")
exit(1)
model = EdgeTPUModel(args.model, args.names, conf_thresh=args.conf_thresh, iou_thresh=args.iou_thresh)
input_size = model.get_image_size()
x = (255*np.random.random((3,*input_size))).astype(np.int8)
model.forward(x)
conf_thresh = 0.25
iou_thresh = 0.45
classes = None
agnostic_nms = False
max_det = 1000
if args.bench_speed:
logger.info("Performing test run")
n_runs = 100
inference_times = []
nms_times = []
total_times = []
for i in tqdm(range(n_runs)):
x = (255*np.random.random((3,*input_size))).astype(np.float32)
pred = model.forward(x)
tinference, tnms = model.get_last_inference_time()
inference_times.append(tinference)
nms_times.append(tnms)
total_times.append(tinference + tnms)
inference_times = np.array(inference_times)
nms_times = np.array(nms_times)
total_times = np.array(total_times)
logger.info("Inference time (EdgeTPU): {:1.2f} +- {:1.2f} ms".format(inference_times.mean()/1e-3, inference_times.std()/1e-3))
logger.info("NMS time (CPU): {:1.2f} +- {:1.2f} ms".format(nms_times.mean()/1e-3, nms_times.std()/1e-3))
fps = 1.0/total_times.mean()
logger.info("Mean FPS: {:1.2f}".format(fps))
elif args.bench_image:
logger.info("Testing on Zidane image")
model.predict("./data/images/zidane.jpg")
elif args.bench_image:
logger.info("Testing on Zidane image")
model.predict("./data/images/zidane.jpg")
elif args.bench_coco:
logger.info("Testing on COCO dataset")
model.conf_thresh = 0.001
model.iou_thresh = 0.65
coco_glob = os.path.join(args.coco_path, "*.jpg")
images = glob.glob(coco_glob)
logger.info("Looking for: {}".format(coco_glob))
ids = [int(os.path.basename(i).split('.')[0]) for i in images]
out_path = "./coco_eval"
os.makedirs("./coco_eval", exist_ok=True)
logger.info("Found {} images".format(len(images)))
class_map = coco80_to_coco91_class()
predictions = []
for image in tqdm(images):
res = model.predict(image, save_img=False, save_txt=False)
save_one_json(res, predictions, Path(image), class_map)
pred_json = os.path.join(out_path,
"{}_predictions.json".format(os.path.basename(args.model)))
with open(pred_json, 'w') as f:
json.dump(predictions, f,indent=1)
elif args.image is not None:
logger.info("Testing on user image: {}".format(args.image))
model.predict(args.image)
elif args.stream:
logger.info("Opening stream on device: {}".format(args.device))
cam = cv2.VideoCapture(args.device)
while True:
try:
res, image = cam.read()
if res is False:
logger.error("Empty image received")
break
else:
full_image, net_image, pad = get_image_tensor(image, input_size[0])
pred = model.forward(net_image)
model.process_predictions(pred[0], full_image, pad)
tinference, tnms = model.get_last_inference_time()
logger.info("Frame done in {}".format(tinference+tnms))
except KeyboardInterrupt:
break
cam.release()