-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
371 lines (343 loc) · 24.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="CSSFolder/IndexPage.css">
</head>
<body>
<!-- Slideshow container -->
<div class="slideshow-container">
<!-- Full-width images with number and caption text -->
<div class="mySlides fade">
<div class="numbertext">1 / 4</div>
<img src="./ImageFolder/BPD1.png" style="width:100%">
</div>
<div class="mySlides fade">
<div class="numbertext">2 / 4</div>
<video id="BPDVideo" controls muted>
<source src="./Movies/BPD.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
<!-- video autoplay muted loop>
<source src="./Movies/BPD.mp4" type="video/mp4" style="width:100%">
Your browser does not support the video tag.
</video -->
</div>
<div class="mySlides fade">
<div class="numbertext">3 / 4</div>
<img src="./ImageFolder/BPD2.png" style="width:100%">
</div>
<div class="mySlides fade">
<div class="numbertext">4 / 4</div>
<img src="./ImageFolder/BPD3.png" style="width:100%">
<!--<div class="text">Caption Three</div>-->
</div>
<!-- Next and previous buttons -->
<a class="prev" onclick="plusSlides(-1)">❮</a>
<a class="next" onclick="plusSlides(1)">❯</a>
</div>
<br>
<!-- The dots/circles -->
<div style="text-align:center">
<span class="dot" onclick="currentSlide(1)"></span>
<span class="dot" onclick="currentSlide(2)"></span>
<span class="dot" onclick="currentSlide(3)"></span>
<span class="dot" onclick="currentSlide(4)"></span>
<a href="./PDFs/BPDLogoGuideBook.pdf"> [Report]</a>
</div>
<script>
var slideIndex = 1;
showSlides(slideIndex);
function plusSlides(n) {
showSlides(slideIndex += n);
}
function currentSlide(n) {
showSlides(slideIndex = n);
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName("mySlides");
var dots = document.getElementsByClassName("dot");
if (n > slides.length) {slideIndex = 1}
if (n < 1) {slideIndex = slides.length}
for (i = 0; i < slides.length; i++) {
slides[i].style.display = "none";
}
for (i = 0; i < dots.length; i++) {
dots[i].className = dots[i].className.replace(" active", "");
}
slides[slideIndex-1].style.display = "block";
dots[slideIndex-1].className += " active";
}
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>
<field>
<h3> Introduction </h3>
<p>
The tuning of the type and size of bandgaps of III-V semiconductors is a major goal for optoelectronic applications. Varying the relative composition of several III- or V-components in compound semiconductors is one of the major approaches here. Alternatively, straining the system can be used to modify the bandgaps. By combining these two approaches, bandgaps can be tuned over a wide range of values, and direct or indirect semiconductors can be designed. However, an optimal choice of composition and strain to a target bandgap requires complete material-specific composition, strain, and bandgap knowledge. Exploring the vast chemical space of all possible combinations of III- and V-elements with variation in composition and strain is experimentally not feasible. We thus developed a density-functional-theory-based predictive computational approach for such an exhaustive exploration. This enabled us to construct the <b>bandgap phase diagram</b> (BPD) by mapping the bandgap in terms of its magnitude and nature over the whole composition-strain space. Further, we have developed efficient machine-learning models to accelerate such mapping in multinary systems. We show the application and great benefit of this new predictive mapping on device design.
<!-- For the introduction to <b>bandgap phase diagram</b> (BPD) concept please refer to [work in progress]. The main idea behind <abbr title="Bandgap Phase Diagram">BPD</abbr> is to understand the composition-strain-bandgap relation in semiconductors (mapping the variation of the bandgap, both in terms of it's magnitude and nature with composition and strain). Please contact to the below contact addresses for further details. -->
</p>
<ul>
<li><a href='./PDFs/short-abstract.pdf'>Download 1-page abstract here</a></li>
<!-- <li><a href='./PDFs/MyResearchSummary2022.pdf'>Download short abstract here</a></li> -->
</ul>
<details><summary>BPD jokes</summary>
<!-- <h1 style="text-align:center">Bandgap Phase Diagram</h1> -->
"""<br>
<b>Me:</b> I want to grow this. Can you please grow this for me?<br>
<b><abbr title="Compositional Phase Diagram">CPD</abbr>:</b> Yeahhhhhhhhhh! Hmmmmmmmmmm!<br>
<b><abbr title="Bandgap Phase Diagram">BPD</abbr>:</b> Hey! Why do you wanna grow this?<br>
<b>Me:</b> I need a device like .... And I thoght this probably will work if I can grow this.<br>
<b>BPD:</b> Are you sure this will work as you want? <br>
<b>Me:</b> Nah! (after 2 days: Nope! It doesn't work. But we are going close. Let's try next one.) <br>
<b>BPD:</b> Wait. Don't waste your time and money. It seems to me this is not the right choice. Use here .... This will be the best option.<br>
.<br>
.<br>
.<br>
<b>Me:</b> Wow. Thanks to both of you.<br>
"""
</details>
</field>
<p>
<h3> General Notes </h3>
<details><summary>Strain definition</summary>
<br>
The strains are calculated according to the following equation: \[Strain(\%) = {a_f - a_{eqm} \over a_{eqm}}\times 100.\]
Where, \(a_f\) is the final stretched/compressed lattice constant, and \(a_{eqm}\) is the equilibrium lattice constant. For biaxial strain, \(a_f\) corresponds to the in-plane (substrate) lattice constant.
<ul>
<li><b>Isotropic strain:</b> Systematically increased (decreased) the lattice parameters isotropically for expansion (compression); and optimized the position of the atoms only, keeping the volume of the cell fixed.</li>
<li><b>Bi-axial strain:</b> Relax the structures only in the out-of-plane lattice direction ([001]) keeping the two in-plane lattice parameters ([100] & [010]) fixed with values that mimic the substrate.</li>
</ul>
</details>
<br>
<details><summary><a href='./WorkFlowChart/WorkFlow.html'>Workflow chart</a></summary>
<p>This is a general work flow that has been used to automatize the calculations and analyses as much as possible. There are a lot places still left for further improvement. Feel free to adapt to your own work flow strategies in your environment.</p>
</details>
</p>
<p>
<h3>Systems</h3>
<details><summary>III-V semiconductors</summary>
<details style='padding:10px 0px 0px 20px;'><summary>III-V binary</summary>
<details style='padding:10px 0px 0px 20px;'><summary>References</summary>
<ul>
<li>Simulation data: <a href='https://doi.org/10.17172/NOMAD/2022.08.20-2'> NOMAD repository</a></li>
<li>Paper: <a href='http://arxiv.org/abs/2208.10596'>arXiv</a>; <a href='https://doi.org/10.1088/1402-4896/acd08b'>Mondal et al., Phys. Scr. 98, 065924 (2023)</a></li>
</ul>
</details>
<details style='padding:10px 0px 0px 20px;'><summary>Upload history</summary>
<ul>
<li>First upload on 25.05.2022.</li>
</ul>
</details>
<!--<ul><li>The project is finished. The report preparation is work in progress. Please contact to below address for further details.</li></ul>-->
<details style='padding:10px 0px 0px 20px;'><summary>Computational details</summary>
<ul class='CompoundList'>
<li>Software: VASP 5.4.4 </li>
<li>Plane wave basis set in conjuction with the projector augmented wave (PAW) method</li>
<li>Primitive zinc blende cell</li>
<li>Energy cut-off: 450 eV </li>
<li>Electronic convergence criteria: 10<sup>-6</sup> eV</li>
<li>Force convergence criteria: 10<sup>-2</sup> eV/Å</li>
<li>10×10×10 Γ-center Monkhorst-Pack kpoint mesh.</li>
<li>PBE-D3 functional for structure optimization</li>
<li>TB09 functional including spin-orbit coupling for bandgap and band structure calculations</li>
<li>\[Strain(\%) = {a_f - a_{eqm} \over a_{eqm}}\times 100.\]
\(a_f\) is the final stretched/compressed lattice constant and \(a_{eqm}\) is the equilibrium lattice constant. For biaxial strain \(a_f\) corresponds to the in-plane (substrate) lattice constant.</li>
<li><b>Isotropic strain:</b> Systematically increased (decreased) the lattice parameters isotropically for expansion (compression); and optimized the position of the atoms only, keeping the volume of the cell fixed.</li>
<li><b>Bi-axial strain:</b> Relax the structures only in the out-of-plane lattice direction ([001]) keeping the two in-plane lattice parameters ([100] & [010]) fixed with values that mimic the substrate.</li>
</ul>
</details>
<details style='padding:10px 0px 0px 20px;'><summary><a href="./Compounds/BinaryPlots.html">Bandgap variation plots</a></summary></details>
<details style='padding:10px 0px 0px 20px;'><summary><a href="./Compounds/BinaryPlots_CBM_transition.html">CBM transition path plots</a></summary></details>
<details style='padding:10px 0px 0px 20px;'><summary>Plot legends descriptions</summary>
<ul class='CompoundList'>
<li>\(\Delta E(eV)\): Energy difference between conduction band and valence band.
<ul>
<li>dE(G): Energy difference between conduction band and valence band at the \(\Gamma\) point.
<ul>
<li>dE(G) (iso): For isotropic strain.</li>
<li>dE(G) (bi): For bi-axial strain.</li>
</ul>
</li>
<li>\(E_g\): Energy difference between conduction band minima and valence band maxima = bandgap.
<ul>
<li>\(E_g\) (iso): For isotropic strain.</li>
<li>\(E_g\) (bi): For bi-axial strain.</li>
</ul>
</li>
</ul>
</li>
<li>(In-plane) Strain(%): (Bi-axial) Isotropic Strain. </li>
<li>\(\Delta E_{CB} (eV)\): Difference between conduction band energies at Gamma point and other k-points.
<ul>
<li>(\Gamma - L): Difference between conduction band energies at \Gamma point and L-point. </li>
<li>(\Gamma - X): Difference between conduction band energies at \Gamma point and X-point. </li>
<li> and so on... </li>
</ul>
</li>
</ul>
</details>
<details style='padding:10px 0px 0px 20px;'><summary><a href="./Compounds/BinarySummaryTable.html">Results Table</a></summary></details>
<details style='padding:10px 0px 0px 20px;'><summary>Bandstructure Movies</summary> The movies shows the evolution of bandstuctures under strain. The band structures were calculated along the high symmetry path of zincblende structures. In all cases, the band energies were rescaled with respect to their corresponding VBM.
<ul>
<li><a href="https://github.com/bmondal94/Bandgap-Phase-Diagram/tree/main/Movies">DOWNLOAD MOVIES</a></li>
<li><a href='./BinaryMovies/GaAsIsotropicTensile.html'>GaAs under isotropic tensile strain</a></li>
<li><a href='./BinaryMovies/GaAsIsotropicCompressive.html'>GaAs under isotropic compressive strain</a></li>
<li><a href='./BinaryMovies/GaAsIsotropicCompressiveZoom.html'>GaAs under isotropic compressive strain zoomed in CB region</a></li>
<li><a href='./BinaryMovies/GaAsBiaxialTensile.html'>GaAs under biaxial tensile strain</a></li>
<li><a href='./BinaryMovies/GaAsBiaxialCompressive.html'>GaAs under biaxial compressive strain</a></li>
<li><a href='./BinaryMovies/GaPIsotropicTensile.html'>GaP under isotropic tensile strain</a></li>
<li><a href='./BinaryMovies/GaPIsotropicCompressive.html'>GaP under isotropic compressive strain</a></li>
<li><a href='./BinaryMovies/GaPBiaxialTensile.html'>GaP under biaxial tensile strain</a></li>
<li><a href='./BinaryMovies/GaPBiaxialCompressive.html'>GaP under biaxial compressive strain</a></li>
</ul>
</details>
</details>
<details style='padding:10px 0px 0px 20px;'><summary>III-V ternary</summary>
<details style='padding:10px 0px 0px 20px;'><summary>References</summary>
<ul>
<li>Simulation data: <a href='https://doi.org/10.17172/NOMAD/2023.02.27-1'> NOMAD repository</a></li>
<li>Paper: <a href='http://arxiv.org/abs/2302.14547'>arXiv</a>; <a href='https://doi.org/10.1103/PhysRevB.108.035202'>Mondal et al., Phys. Rev. B 108, 035202 (2023)</a></li>
</ul>
</details>
<details style='padding:10px 0px 0px 20px;'><summary>DFT based</summary>
<ul class='CompoundList'>
<li><a href="./Compounds/GaAsP_isotropic.html"> GaAsP (isotropic strain)</a>, <a href="./Compounds/GaAsP_biaxial.html"> GaAsP (biaxial strain)</a>, <a href="./CompDetails/CompDetail.html"> Computational details</a> <!--, <a href="./Compounds/GaAsP_exp_verification.html">Experimental verification</a></li> -->
<li><a href="./Compounds/GaAsN_isotropic.html"> GaAsN (isotropic strain)</a>, <a href="./Compounds/GaAsN_biaxial.html"> GaAsN (biaxial strain)</a>, <a href="./CompDetails/CompDetail.html"> Computational details</a></li>
<!--<ul><li> No direct-indirect transition (DIT) for GaAsN under biaxial strain within <span>±</span> 5% of strain.</li></ul> -->
<li><a href="./Compounds/GaPSb.html"> GaPSb (biaxial strain)</a>, <a href="./CompDetails/CompDetail_GaPSb.html">Computational details</a><!--, <a href="./Compounds/GaPSb_exp_verification.html">Experimental verification</a></li> -->
<li><a href="./Compounds/GaAsSb.html"> GaAsSb (biaxial strain)</a>, <a href="./CompDetails/CompDetail_GaPSb.html">Computational details</a></li>
<li><a href="./Compounds/GaPBi.html"> GaPBi (biaxial strain)</a>, <!--(<span style='color:red'>* available only on personal contact</span>),--> <a href="./CompDetails/CompDetail_GaPBi.html">Computational details</a></li>
<li><a href="./Compounds/GaAsBi.html"> GaAsBi (biaxial strain)</a>, <!--(<span style='color:red'>* available only on personal contact</span>),--> <a href="./CompDetails/CompDetail_GaPBi.html">Computational details</a></li>
<li><a href="./ImpNotes.html"> Important notes </a></li>
<li><a href="./Compounds/experiments.xlsx"> Comparison with experiments </a></li>
</ul>
</details>
<!-- <details style='padding:10px 0px 0px 20px;'><summary>ML model based</summary>
Work in progress.
</details> -->
</details>
<details style='padding:10px 0px 0px 20px;'><summary>III-V quaternary</summary>
<details style='padding:10px 0px 0px 20px;'><summary>Machine learning based</summary>
Note: As epitaxial growth is the most common approach to grow multinary III-V semiconductors, below we map the bandgap phase diagram for these compounds under biaxial strain only.<br>
Warning: The project is work in progress. Complete data is not available yet. Please contact to the below address for further details.
<details style='padding:10px 0px 0px 20px;'><summary>Supervised learning with SVM(rbf)</summary>
<ul>
<li>SVR(rbf) and SVC(rbf) ML models were used for the bandgap magnitude and bandgap nature, respectively.</li>
<li><a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/SupervisedLearning/scripts">Scripts</a> (note: 'MachineLearning_*.py' are the main script. 'MachineLearning_*.py' imports functions from rest of the scripts.)</li>
<li><a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/SupervisedLearning/SystemSpecificScripts">System specific scripts</a> (note: 'ML_Models_*.py' imports functions from ../SupervisedLeaning/scripts folder.)</li>
<li><a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/SupervisedLearning/DATAbase">Data bases</a> (type: python SQLite)</li>
</ul>
<details style='padding:1px 0px 0px 20px;'><summary>Compounds <!-- <div class="blink">(coming soon)</div> --> </summary>
<details style='padding:10px 0px 0px 20px;'><summary>GaAsPSb (biaxial strain)</summary>
<ul>
<li>Simulation data: <a href='https://doi.org/10.17172/NOMAD/2023.05.03-1'> NOMAD repository</a></li>
<li>Paper: <a href='https://doi.org/10.48550/arXiv.2305.03666'>arXiv</a>; <a href='https://doi.org/10.1063/5.0159604'>Mondal et al., J. Chem. Phys. 159, 104702 (2023)</a></li>
<li><a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/SupervisedLearning/RESULTS/ComputationalDetails/CompDetail.html">Computational details</a>, <a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/SupervisedLearning/RESULTS/MODELS/GaAsPSb_FinalBest5TrainedModels" >Best 5 trained models (run PredictBandgap.py)</a></li>
<li><a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/SupervisedLearning/RESULTS/HTMLs/BandgapPhaseDiagramGaAsPSb.html">Bandgap phase diagram</a>, <a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/SupervisedLearning/RESULTS/HTMLs/DirectIndirectTransitionLines.html">Direct-indirect transition lines</a></li>
<li><a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/SupervisedLearning/RESULTS/HTMLs/SubstrateEffectBandgapPhaseDiagram.html">Effect of substrate on bandgap (theoretical epitaxy)</a>, <a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/SupervisedLearning/RESULTS/HTMLs/SubstrateEffectStrainMap.html">Strain map within theoretical epitaxy model</a></li>
</ul>
</details>
</details>
</details>
<details style='padding:10px 0px 0px 20px;'><summary>Active learning with SVM(rbf)</summary>
<ul>
<li>SVR(rbf) and SVC(rbf) ML models were used for the bandgap magnitude and bandgap nature, respectively.</li>
<li><a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/ActiveLearning/scripts">Scripts</a> (note: 'ActiveLearning.py' is the main script. 'ActiveLearning.py' imports functions from rest of the scripts.)</li>
<li><a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/ActiveLearning/DATAbase">Data bases</a> (type: python SQLite)</li>
</ul>
<details style='padding:1px 0px 0px 20px;'><summary>Compounds <div class="blink">(coming soon)</div></summary>
<ul>
<li>GaAsPSb (biaxial strain), <a href="https://bmondal94.github.io/Machine-Learning-Bandgap-Phase-Diagram/ActiveLearning/RESULTS/ComputationalDetails/CompDetail.html">Computational details</a>, Trained models <!-- <a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/tree/main/ActiveLearning/RESULTS/MODELS" >Trained models</a> -->
</li>
</ul>
</details>
</details>
</details>
</details>
</details>
</p>
<p>
<h3>Talks, seminars, conferences</h3>
<p>
<ul class='CompoundList'>
<li><a href="https://www.uni-marburg.de/en/grk1782">GRK-1782 workshop 2021</a> (presentation).</li>
<li><a href="https://stc2021.uni-wuerzburg.de/">STC symposium 2021</a> (poster).</li>
<li><a href='https://www.uni-marburg.de/en/wzmw/strl'>Epi-seminar</a> (internal invited talk: 10.01.2022, <a href='./PDFs/epi-seminar2022.pdf'>Presentation slides</a>, <a href='./PDFs/epi-seminar2022_notes_upload.pdf'>Presentation slide notes</a>, <a href='./PDFs/DPG2022_backup.pdf'>Backup slides</a>)</li>
<li><a href="https://icmovpexx.eu/">ICMOVPE XX - 2022</a> (Presentation).</li>
<li><a href="https://www.psik2022.net/home">PSI-K conference 2022</a> (poster).</li>
<li><a href="https://regensburg22.dpg-tagungen.de/">DPG 2022</a> (Presentation).</li>
<li><a href="https://www.stc2022.uni-heidelberg.de/">STC 2022</a> (<a href='./PDFs/psik2022_Poster.pdf'>poster</a>).</li>
<li><a href="https://skm23.dpg-tagungen.de/tagungsort/index.html">DPG 2023</a> (<a href='./PDFs/DPG2023.pptx'>Presentation slides</a>, <a href='./PDFs/DPG_presentation_notes.pdf'>Presentation slide notes</a>).</li>
</ul>
</p>
</p>
<p>
<h3>Future plans (as of May 2023)</h3>
<p>
<ul class='CompoundList'>
<li>Active Learning to acclerate the process.</li>
<li>Apply our strategies to other systems (such as II-VI).</li>
<li>Experimental verification wherever possible.</li>
</ul>
<b style='color:green;'>We are seeking collaborations with both theoretical and experimental researchers who are actively engaged in their respective fields.</b>
</p>
</p>
<p>
<h3>Discussion channel</h3>
<p>For general discussions <a href="https://github.com/bmondal94/Bandgap-Phase-Diagram/discussions">click here</a>. For machine leanrning related discussion you can also use <a href="https://github.com/bmondal94/Machine-Learning-Bandgap-Phase-Diagram/discussions">this channel</a>.
</p>
<p>
<h3>Contribution</h3>
<p>For general discussions <a href="https://github.com/bmondal94/Bandgap-Phase-Diagram/discussions">click here</a>. If you want to contribute to this project please refer to my GitHub page <img src="./ImageFolder/GitHub.png" style="width:20px;height:20px;">. <a href="https://github.com/bmondal94/Bandgap-Phase-Diagram"> Link </a></p>
</p>
<p>
<h3>References</h3>
<ul class='CompoundList'>
<li>Bandgap phase diagram
<ul>
<li>Binary III-V semiconductors: <a href='http://arxiv.org/abs/2208.10596'>arXiv</a>; <a href='https://doi.org/10.1088/1402-4896/acd08b'> Mondal et al., Phys. Scr. 98, 065924 (2023)</a>; <a href='https://doi.org/10.17172/NOMAD/2022.08.20-2'>NOMAD repository</a></li>
<li>Ternary III-V semiconductors: <a href="http://arxiv.org/abs/2302.14547">arXiv</a>; <a href='https://doi.org/10.1103/PhysRevB.108.035202'>Mondal et al., Phys. Rev. B 108, 035202 (2023)</a>; <a href='https://doi.org/10.17172/NOMAD/2023.02.27-1'>NOMAD repository</a></li>
<li>Quaternary III-V semiconductors:
<ul>
<li>GaAsPSb system: <a href="https://doi.org/10.48550/arXiv.2305.03666">arXiv</a>; <a href='https://doi.org/10.1063/5.0159604'>Mondal et al., J. Chem. Phys. 159, 104702 (2023)</a>; <a href='https://doi.org/10.17172/NOMAD/2023.05.03-1'>NOMAD repository</a></li>
</ul>
</ul>
</li>
<li>Band unfolding: <a href="https://github.com/rubel75/fold2Bloch-VASP">Fold2Bloch-VASP</a>, <a href="https://github.com/band-unfolding/bandup">BandUP</a></li>
<li>Bloch spectral density: <a href="https://doi.org/10.1103/PhysRevB.64.115208">PRB 64, 115208 (2001)</a>, <a href="https://doi.org/10.1103/PhysRevLett.104.236403">PRL 104, 236403 (2010)</a>, <a href="https://doi.org/10.1103/PhysRevB.90.115202">PRB 90, 115202 (2014)</a></li>
</ul>
</p>
<p>
<h3>Contact details</h3>
<address>
<a href="https://orcid.org/0000-0002-0522-1254"> Badal Mondal</a> and <a href="https://woi.chemie.uni-leipzig.de/start/ak-prof-tonner-zech/">Prof. Dr. Ralf Tonner-Zech</a><br>
Visit us at: <a href="https://woi.chemie.uni-leipzig.de/start/ak-prof-tonner-zech/">Our group at Leipzig University</a><br>
<p>
<a href='https://www.linkedin.com/in/badal-mondal-5a3522149/'>LinkdIn</a> |
<a href='https://orcid.org/0000-0002-0522-1254'>ORCiD</a> |
</p>
</address>
<p> For comments and suggestions please email to <a href="mailto:[email protected],[email protected],[email protected]">email id</a>.</p>
</p>
<p>
<h3>Acknowledgements</h3>
<p> As of 2021-2022-2023: This project was performed by Badal Mondal as a part of the <a href="https://www.uni-marburg.de/en/grk1782">DFG-Research Training Group "Functionalization of Semiconductors" (GRK 1782)</a> under the supervision of <a href="https://woi.chemie.uni-leipzig.de/start/ak-prof-tonner-zech/">Prof. Dr. Ralf Tonner-Zech</a>. We are extremely thankful to <a href='https://www.uni-marburg.de/en/hrz'>HRZ Marburg<a>, <a href='https://csc.uni-frankfurt.de/wiki/doku.php?id=public:service:goethe-hlr'>Goethe-HLR Frankfurt</a>, <a href='https://doc.zih.tu-dresden.de/'>ZIH TU Dresden</a> and <a href='https://kb.hlrs.de/platforms/index.php/HPE_Hawk'>HLR Stuttgart</a> for providing the necessary computational resources. We sincerely thank <a href='https://www.uni-marburg.de/staff-info?dn=ta6olp7wra'>Prof. Dr. Kerstin Volz<a> and late <a href='https://de.wikipedia.org/wiki/Bruno_Eckhardt'>Prof. Dr. Brunno Eckhardt<a> for discussions and continued support.</p>
</p>
<p>
<h3>Copyright (c) 2021</h3>
<p> <a href=https://bmondal94.github.io/Bandgap-Phase-Diagram/> This page</a> is created (22.09.2021) and maintained by <a href="https://github.com/bmondal94"> Badal Mondal</a>. If the results in this page are useful to you we will consider our efforts successful. We will highly appreciate if you cite the above references and this page, if you use the results from this page.
</p>
<p>
<h3>License</h3>
<p> <a href='./LICENSE'>MIT License</a>
</p>
<p>
<h3>Last updated</h3>
<p> Last updated on May 24, 2023 (10:00:00 CET) by <a href="https://github.com/bmondal94">Badal Mondal</a>.
</p>
</body>
</html>