forked from lefnire/tforce_btc_trader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgp.py
218 lines (170 loc) · 7.82 KB
/
gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Bayesian optimisation of loss functions.
https://github.com/thuijskens/bayesian-optimization
TODO this file comes from ^, the only modification being the added method at the bottom. Let's get this into
requirements.txt as a git+https requirement, import these fns, and this file will just be the one addition
"""
import os.path
import numpy as np
import sklearn.gaussian_process as gp
from scipy.stats import norm
from scipy.optimize import minimize
from sklearn.externals import joblib
def expected_improvement(x, gaussian_process, evaluated_loss, greater_is_better=False, n_params=1):
""" expected_improvement
Expected improvement acquisition function.
Arguments:
----------
x: array-like, shape = [n_samples, n_hyperparams]
The point for which the expected improvement needs to be computed.
gaussian_process: GaussianProcessRegressor object.
Gaussian process trained on previously evaluated hyperparameters.
evaluated_loss: Numpy array.
Numpy array that contains the values off the loss function for the previously
evaluated hyperparameters.
greater_is_better: Boolean.
Boolean flag that indicates whether the loss function is to be maximised or minimised.
n_params: int.
Dimension of the hyperparameter space.
"""
x_to_predict = x.reshape(-1, n_params)
mu, sigma = gaussian_process.predict(x_to_predict, return_std=True)
if greater_is_better:
loss_optimum = np.max(evaluated_loss)
else:
loss_optimum = np.min(evaluated_loss)
scaling_factor = (-1) ** (not greater_is_better)
# In case sigma equals zero
with np.errstate(divide='ignore'):
Z = scaling_factor * (mu - loss_optimum) / sigma
expected_improvement = scaling_factor * (mu - loss_optimum) * norm.cdf(Z) + sigma * norm.pdf(Z)
expected_improvement[sigma == 0.0] == 0.0
return -1 * expected_improvement
def sample_next_hyperparameter(acquisition_func, gaussian_process, evaluated_loss, greater_is_better=False,
bounds=(0, 10), n_restarts=25):
""" sample_next_hyperparameter
Proposes the next hyperparameter to sample the loss function for.
Arguments:
----------
acquisition_func: function.
Acquisition function to optimise.
gaussian_process: GaussianProcessRegressor object.
Gaussian process trained on previously evaluated hyperparameters.
evaluated_loss: array-like, shape = [n_obs,]
Numpy array that contains the values off the loss function for the previously
evaluated hyperparameters.
greater_is_better: Boolean.
Boolean flag that indicates whether the loss function is to be maximised or minimised.
bounds: Tuple.
Bounds for the L-BFGS optimiser.
n_restarts: integer.
Number of times to run the minimiser with different starting points.
"""
best_x = None
best_acquisition_value = 1
n_params = bounds.shape[0]
for starting_point in np.random.uniform(bounds[:, 0], bounds[:, 1], size=(n_restarts, n_params)):
res = minimize(fun=acquisition_func,
x0=starting_point.reshape(1, -1),
bounds=bounds,
method='L-BFGS-B',
args=(gaussian_process, evaluated_loss, greater_is_better, n_params))
if res.fun < best_acquisition_value:
best_acquisition_value = res.fun
best_x = res.x
return best_x
def bayesian_optimisation(n_iters, sample_loss, bounds, x0=None, n_pre_samples=5,
gp_params=None, random_search=False, alpha=1e-5, epsilon=1e-7):
""" bayesian_optimisation
Uses Gaussian Processes to optimise the loss function `sample_loss`.
Arguments:
----------
n_iters: integer.
Number of iterations to run the search algorithm.
sample_loss: function.
Function to be optimised.
bounds: array-like, shape = [n_params, 2].
Lower and upper bounds on the parameters of the function `sample_loss`.
x0: array-like, shape = [n_pre_samples, n_params].
Array of initial points to sample the loss function for. If None, randomly
samples from the loss function.
n_pre_samples: integer.
If x0 is None, samples `n_pre_samples` initial points from the loss function.
gp_params: dictionary.
Dictionary of parameters to pass on to the underlying Gaussian Process.
random_search: integer.
Flag that indicates whether to perform random search or L-BFGS-B optimisation
over the acquisition function.
alpha: double.
Variance of the error term of the GP.
epsilon: double.
Precision tolerance for floats.
"""
x_list = []
y_list = []
n_params = bounds.shape[0]
if x0 is None:
for params in np.random.uniform(bounds[:, 0], bounds[:, 1], (n_pre_samples, bounds.shape[0])):
x_list.append(params)
y_list.append(sample_loss(params))
else:
for params in x0:
x_list.append(params)
y_list.append(sample_loss(params))
xp = np.array(x_list)
yp = np.array(y_list)
# Create the GP
if gp_params is not None:
model = gp.GaussianProcessRegressor(**gp_params)
else:
kernel = gp.kernels.Matern()
model = gp.GaussianProcessRegressor(kernel=kernel,
alpha=alpha,
n_restarts_optimizer=10,
normalize_y=True)
for n in range(n_iters):
model.fit(xp, yp)
# Sample next hyperparameter
if random_search:
x_random = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(random_search, n_params))
ei = -1 * expected_improvement(x_random, model, yp, greater_is_better=True, n_params=n_params)
next_sample = x_random[np.argmax(ei), :]
else:
next_sample = sample_next_hyperparameter(expected_improvement, model, yp, greater_is_better=True, bounds=bounds, n_restarts=100)
# Duplicates will break the GP. In case of a duplicate, we will randomly sample a next query point.
if np.any(np.abs(next_sample - xp) <= epsilon):
next_sample = np.random.uniform(bounds[:, 0], bounds[:, 1], bounds.shape[0])
# Sample loss for new set of parameters
cv_score = sample_loss(next_sample)
# Update lists
x_list.append(next_sample)
y_list.append(cv_score)
# Update xp and yp
xp = np.array(x_list)
yp = np.array(y_list)
return xp, yp
def bayesian_optimisation2(loss_fn, bounds, x_list=[], y_list=[], n_pre_samples=5, alpha=1e-5, epsilon=1e-7):
n_pre_samples -= len(x_list)
if n_pre_samples > 0:
for params in np.random.uniform(bounds[:, 0], bounds[:, 1], (n_pre_samples, bounds.shape[0])):
x_list.append(params)
y_list.append(loss_fn(params))
xp = np.array(x_list)
yp = np.array(y_list)
# Create the GP
kernel = gp.kernels.Matern()
model = gp.GaussianProcessRegressor(
kernel=kernel,
alpha=alpha,
n_restarts_optimizer=10,
normalize_y=True
)
print("Fitting GP")
model.fit(xp, yp)
# Sample next hyperparameter
next_sample = sample_next_hyperparameter(expected_improvement, model, yp, greater_is_better=True, bounds=bounds, n_restarts=100)
# Duplicates will break the GP. In case of a duplicate, we will randomly sample a next query point.
if np.any(np.abs(next_sample - xp) <= epsilon):
next_sample = np.random.uniform(bounds[:, 0], bounds[:, 1], bounds.shape[0])
# Sample loss for new set of parameters
loss_fn(next_sample)