forked from atiselsts/uniswap-lp-articles-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_article_2.py
executable file
·458 lines (342 loc) · 13.8 KB
/
plot_article_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python
#
# This plots the figures for the article on continuous hedging.
#
import matplotlib.pyplot as pl
import numpy as np
from ing_theme_matplotlib import mpl_style
import v2_math
import v3_math
from math import sqrt
# Constants for the LP positions
INITIAL_PRICE = 100
# select the value such that at 50:50 HODL we have 1.0 of the volatile asset X
INITIAL_VALUE = 2 * INITIAL_PRICE
INITIAL_X = INITIAL_VALUE / INITIAL_PRICE / 2
INITIAL_Y = INITIAL_VALUE / 2
# Constants for price simulations
# similar to the 1-day volatility for ETH-USD
SIGMA = 0.05
# assume 12 second blocks as in the mainnet
BLOCKS_PER_DAY = 86400 // 12
NUM_DAYS = 365
# assume 0.3% swap fee
SWAP_FEE = 0.3 / 100
NUM_SIMULATIONS = 100
# Constants for plotting
pl.rcParams["savefig.dpi"] = 200
############################################################
#
# Use geometrical Brownian motion to simulate price evolution.
#
def get_price_path(sigma_per_day):
np.random.seed(123) # make it repeatable
mu = 0.0 # assume delta neutral behavior
T = NUM_DAYS
n = T * BLOCKS_PER_DAY
# calc each time step
dt = T/n
# simulation using numpy arrays
St = np.exp(
(mu - sigma_per_day ** 2 / 2) * dt
+ sigma_per_day * np.random.normal(0, np.sqrt(dt), size=(NUM_SIMULATIONS, n-1)).T
)
# include array of 1's
St = np.vstack([np.ones(NUM_SIMULATIONS), St])
# multiply through by S0 and return the cumulative product of elements along a given simulation path (axis=0).
St = INITIAL_PRICE * St.cumprod(axis=0)
return St
############################################################
def get_hedging_costs_v2(step):
step += 1.0
initial_x = INITIAL_X
initial_y = INITIAL_Y
initial_capital = 5 * INITIAL_Y # use 4 parts of assets for lending, 1 straight to the pool
x_borrowed = initial_x
L = v2_math.get_liquidity(initial_x, initial_y)
V0 = v2_math.position_value_from_liquidity(L, INITIAL_PRICE)
hedging_costs = []
num_tx = 0
all_prices = get_price_path(SIGMA)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
year_sigma = SIGMA * sqrt(NUM_DAYS)
print(f"sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
for sim in range(NUM_SIMULATIONS):
prices = all_prices[:,sim]
p_low = prices[0] / step
p_high = prices[0] * step
total_fees = 0
tx = 0
for price in prices:
if not (p_low <= price <= p_high):
p_low = price / step
p_high = price * step
x_in_pos = v2_math.calculate_x(L, price)
delta_x = x_borrowed - x_in_pos
delta_y = delta_x * price
x_borrowed = x_in_pos # repay / add some ETH
swap_fee = abs(delta_y) * SWAP_FEE
total_fees += swap_fee # assume zero transaction fees
num_tx += 1
hedging_costs.append(total_fees)
mean_hedging_costs = np.mean(hedging_costs)
mean_hedging_costs /= initial_capital
print(f"step={step} mean costs={100 * mean_hedging_costs:.2f}%, per day ={100 * mean_hedging_costs / NUM_DAYS:.2f}%")
print(f" average number of transactions: {num_tx / NUM_SIMULATIONS:.1f}")
return mean_hedging_costs, num_tx / NUM_SIMULATIONS
############################################################
def get_hedging_costs_v3(step):
step += 1.0
# set price range to +50% above the current price, and symmetrical range below
price_b = INITIAL_PRICE * 1.5
price_a = INITIAL_PRICE / 1.5
sa = sqrt(price_a)
sb = sqrt(price_b)
initial_x = INITIAL_X
initial_y = INITIAL_Y
initial_capital = 5 * INITIAL_Y # use 4 parts of assets for lending, 1 straight to the pool
x_borrowed = initial_x
L = v3_math.get_liquidity(initial_x, initial_y, sqrt(INITIAL_PRICE), sa, sb)
V0 = v3_math.position_value_from_liquidity(L, INITIAL_PRICE, price_a, price_b)
hedging_costs = []
num_tx = 0
all_prices = get_price_path(SIGMA)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
year_sigma = SIGMA * sqrt(NUM_DAYS)
print(f"sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
for sim in range(NUM_SIMULATIONS):
prices = all_prices[:,sim]
p_low = prices[0] / step
p_high = prices[0] * step
total_fees = 0
tx = 0
for price in prices:
if not (p_low <= price <= p_high):
p_low = price / step
p_high = price * step
x_in_pos = v3_math.calculate_x(L, sqrt(price), sa, sb)
delta_x = x_borrowed - x_in_pos
delta_y = delta_x * price
x_borrowed = x_in_pos # repay / add some ETH
swap_fee = abs(delta_y) * SWAP_FEE
total_fees += swap_fee # assume zero transaction fees
num_tx += 1
hedging_costs.append(total_fees)
mean_hedging_costs = np.mean(hedging_costs)
mean_hedging_costs /= initial_capital
print(f"step={step} mean costs={100 * mean_hedging_costs:.2f}%, per day ={100 * mean_hedging_costs / NUM_DAYS:.2f}%")
print(f" average number of transactions: {num_tx / NUM_SIMULATIONS:.1f}")
return mean_hedging_costs, num_tx / NUM_SIMULATIONS
############################################################
def plot_hedging_costs_v2():
fig, ax = pl.subplots()
fig.set_size_inches((5, 3))
costs_percent = []
numtx = []
steps = [0.01, 0.02, 0.04, 0.08, 0.16, 0.32]
for step in steps:
c, ntx = get_hedging_costs_v2(step)
costs_percent.append(c * 100)
numtx.append(ntx)
x = [u * 100 for u in steps]
pl.plot(x, costs_percent, linewidth=2, marker="D")
pl.xlabel("Step size, %")
pl.ylabel("Yearly hedging costs, %")
pl.savefig("article_2_hedging_costs_v2.png", bbox_inches='tight')
pl.close()
def plot_hedging_costs_v3():
fig, ax = pl.subplots()
fig.set_size_inches((5, 3))
costs_percent = []
numtx = []
steps = [0.01, 0.02, 0.04, 0.06, 0.08, 0.1]
for step in steps:
c, ntx = get_hedging_costs_v3(step)
costs_percent.append(c * 100)
numtx.append(ntx)
x = [u * 100 for u in steps]
pl.plot(x, costs_percent, linewidth=2, marker="D")
pl.xlabel("Step size, %")
pl.ylabel("Yearly hedging costs, %")
pl.savefig("article_2_hedging_costs_v3.png", bbox_inches='tight')
pl.close()
############################################################
def is_liquidated(y_lent, x_borrowed, price):
MAX_LTV = 1.0 # note: unrealistically high!
current_ltv = x_borrowed * price / y_lent
#print(price, "ltv=", current_ltv)
return current_ltv >= MAX_LTV
#
# The scenario to simulate:
# - ETH price is $100
# - have 500 USDC initial capital
# - buy ETH for 100 * (1 - borrow_ratio) USDC
# - put 400 USDC in lending protocol
# - borrow 1 * borrow_ratio ETH, worth 100 * borrow_ratio USDC
# - put 100 USDC and 1 ETH in the pool
#
def rebalanced_value(L, p_min, p_max, step, borrow_ratio):
print(p_min, p_max)
prices = [INITIAL_PRICE]
values = [5 * INITIAL_Y]
step += 1.0
print("step=", step)
if borrow_ratio < 0:
is_dynamic = True
borrow_ratio += 1
borrow_ratio0 = borrow_ratio
adjustable_borrow_ratio = 1.0 - borrow_ratio
else:
is_dynamic = False
# price increasing run
price = INITIAL_PRICE
if is_dynamic:
y_lent = INITIAL_Y * 4
x_borrowed = INITIAL_X
else:
y_lent = INITIAL_Y * 4 - INITIAL_X * (1 - borrow_ratio) * price
x_borrowed = INITIAL_X * borrow_ratio
while price < p_max and L > 0:
price *= step
if is_liquidated(y_lent, x_borrowed, price):
print("liquidated at ", price)
break
# evaluation step: what is the value at the new price?
v_lp = v2_math.position_value_from_liquidity(L, price)
v_hedge = v2_math.position_value(-x_borrowed, y_lent, price)
v = v_lp + v_hedge
print(f"L={L:.0f} price={price:.0f} x_borrowed={x_borrowed} y_lent={y_lent} v_lp={v_lp:.0f} v={v:.0f}")
prices.append(price)
values.append(v)
if is_dynamic:
effective_price = min(price, p_max)
remaining = (p_max - effective_price) / (p_max - INITIAL_PRICE)
borrow_ratio = borrow_ratio0 + adjustable_borrow_ratio * remaining
print(" ", borrow_ratio)
x_in_pos = v2_math.calculate_x(L, price)
delta_x = x_borrowed - x_in_pos * borrow_ratio
print(" x_borrowed=", x_borrowed, "x_in_pos=", x_in_pos, "delta_x=", delta_x)
delta_y = delta_x * price
y_lent -= delta_y # remove USDC collateral
x_borrowed = x_in_pos * borrow_ratio # repay some ETH
print("")
# price decreasing run
price = INITIAL_PRICE
if is_dynamic:
borrow_ratio = 1.0
y_lent = INITIAL_Y * 4 - INITIAL_X * (1 - borrow_ratio) * price
x_borrowed = INITIAL_X * borrow_ratio
while price > p_min and L > 0:
price /= step
# liquidation is not possible
# evaluation step: what is the value at the new price?
v_lp = v2_math.position_value_from_liquidity(L, price)
v_hedge = v2_math.position_value(-x_borrowed, y_lent, price)
v = v_lp + v_hedge
print(f"L={L:.0f} price={price:.0f} x_borrowed={x_borrowed} y_lent={y_lent} v_lp={v_lp:.0f} v={v:.0f}")
prices = [price] + prices
values = [v] + values
if is_dynamic:
effective_price = max(price, p_min)
remaining = (effective_price - p_min) / (INITIAL_PRICE - p_min)
borrow_ratio = 1.0 + borrow_ratio0 + adjustable_borrow_ratio * (1 - remaining)
print(" ", borrow_ratio)
x_in_pos = v2_math.calculate_x(L, price)
delta_x = x_borrowed - x_in_pos * borrow_ratio
delta_y = delta_x * price
x_borrowed = x_in_pos * borrow_ratio # borrow more ETH
y_lent -= delta_y # add more USDC collateral
return prices, values
############################################################
#
# This shows value of LP position (v2 style) hedged with rebalancing hedges
#
def plot_portfolio_value(L, mn, mx, step_sizes, borrow_ratio, filename):
fig, ax = pl.subplots()
fig.set_size_inches((5, 3))
for step in step_sizes:
x, y = rebalanced_value(L, mn, mx, step, borrow_ratio)
pl.plot(x, y, linewidth=2, label=f"Step={step*100:.0f}%") #, color="black")
if False:
# optional: plot how the HODL looks like
y = [4 * INITIAL_Y + INITIAL_X * price for price in x]
pl.plot(x, y, linewidth=2, label=f"HODL 4:1")
pl.xlabel("Volatile asset price, $")
pl.ylabel("Total portfolio value, $")
pl.legend()
pl.savefig("article_2_" + filename, bbox_inches='tight')
pl.close()
#
# This shows value of LP position (v2 style) partially hedged with rebalancing hedges
#
def plot_partial_hedged_portfolio_value(L, mn, mx, step, borrow_ratios, filename):
fig, ax = pl.subplots()
fig.set_size_inches((5, 3))
for borrow_ratio in borrow_ratios:
x, y = rebalanced_value(L, mn, mx, step, borrow_ratio)
if borrow_ratio < 0:
label = f"Dynamic borrow ratio"
else:
label = f"Borrow ratio={borrow_ratio*100:.0f}%"
pl.plot(x, y, linewidth=2, label=label)
y = [4 * INITIAL_Y + INITIAL_X * price for price in x]
pl.plot(x, y, linewidth=2, label=f"HODL 4:1", color="white")
pl.xlabel("Volatile asset price, $")
pl.ylabel("Total portfolio value, $")
pl.legend()
pl.savefig("article_2_" + filename, bbox_inches='tight')
pl.close()
############################################################
def plot_value_functions(L, mn, mx, filename):
STEP = 0.01 * INITIAL_PRICE
YLIM_MIN = 0
YLIM_MAX = 1000
x = np.arange(mn, mx, STEP)
y_lp = [v2_math.position_value_from_liquidity(L, price) for price in x]
y_hodl = [(INITIAL_VALUE / 2 + price) / 2 for price in x]
y_asset = [price for price in x]
x1 = np.arange(mn, INITIAL_PRICE, STEP)
x2 = np.arange(INITIAL_PRICE, mx, STEP)
fig, ax = pl.subplots()
fig.set_size_inches((5, 3))
pl.plot(x, y_lp, linewidth=2, color="orange")
pl.plot(x, y_hodl, linewidth=2, color="darkgreen")
pl.plot(x, y_asset, linewidth=2, color="green")
pl.xlabel("Volatile asset price, $")
pl.ylabel("Value, $")
pl.text(350, 550, "$y=x$ [100% asset]", weight='bold')
pl.text(450, 325, "$y=x/2 + const$ [50:50 HODL]", weight='bold')
pl.text(500, 170, "$y=sqrt(x)$ [LP position]", weight='bold')
pl.ylim(YLIM_MIN, YLIM_MAX)
pl.xlim(0, mx + 0.1)
pl.savefig("article_2_" + filename, bbox_inches='tight')
pl.close()
############################################################
def main():
mpl_style(True)
L_v2 = v2_math.get_liquidity(INITIAL_X, INITIAL_Y)
print(f"L_v2={L_v2:.2f}")
value_v2 = v2_math.position_value_from_liquidity(L_v2, INITIAL_PRICE)
print(f"initial_value_v2={value_v2:.2f}")
# min price
mn = INITIAL_PRICE / 10
# max price
mx = 10 * INITIAL_PRICE
plot_value_functions(L_v2, mn, mx, "value_functions.png")
plot_portfolio_value(L_v2, mn, mx, [0.1, 0.5, 1, 2], 1.0,
"rebalancing_value_lp_fullrange.png")
# min price
mn = INITIAL_PRICE / 4
# max price
mx = 4 * INITIAL_PRICE
plot_portfolio_value(L_v2, mn, mx, [0.01, 0.05, 0.1], 1.0,
"rebalancing_value_lp_fullrange_fine.png")
plot_partial_hedged_portfolio_value(L_v2, mn, mx, 0.1, [1.0, 0.5, -1],
"rebalancing_value_lp_fullrange_parthedged.png")
plot_hedging_costs_v2()
plot_hedging_costs_v3()
if __name__ == '__main__':
main()
print("all done!")