forked from compphoto/BoostingMonocularDepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
373 lines (292 loc) · 15 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from operator import getitem
from torchvision.transforms import Compose
import torch
import cv2
import numpy as np
import warnings
warnings.simplefilter('ignore', np.RankWarning)
import gradio as gr
import os
import gdown
# OUR
from utils import ImageandPatchs, generatemask, getGF_fromintegral, calculateprocessingres, rgb2gray,\
applyGridpatch
# MIDAS
import midas.utils
from midas.models.midas_net import MidasNet
from midas.models.transforms import Resize, NormalizeImage, PrepareForNet
# PIX2PIX : MERGE NET
from pix2pix.options.test_options import TestOptions
from pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
#
## Download model wieghts
# Mergenet model
os.system("mkdir -p ./pix2pix/checkpoints/mergemodel/")
url = "https://drive.google.com/u/0/uc?id=1cU2y-kMbt0Sf00Ns4CN2oO9qPJ8BensP&export=download"
output = "./pix2pix/checkpoints/mergemodel/"
gdown.download(url, output, quiet=False)
url = "https://drive.google.com/uc?id=1nqW_Hwj86kslfsXR7EnXpEWdO2csz1cC"
output = "./midas/"
gdown.download(url, output, quiet=False)
#
# select device
device = torch.device("cpu")
print("device: %s" % device)
print("nvidia:", torch.cuda.device_count())
whole_size_threshold = 3000 # R_max from the paper
GPU_threshold = 1600 - 32 # Limit for the GPU (NVIDIA RTX 2080), can be adjusted
scale_threshold = 3 # Allows up-scaling with a scale up to 3
opt = TestOptions().parse()
opt.gpu_ids = []
global pix2pixmodel
pix2pixmodel = Pix2Pix4DepthModel(opt)
pix2pixmodel.save_dir = './pix2pix/checkpoints/mergemodel'
pix2pixmodel.load_networks('latest')
pix2pixmodel.netG.to(device)
pix2pixmodel.device = device
pix2pixmodel.eval()
midas_model_path = "midas/model.pt"
global midasmodel
midasmodel = MidasNet(midas_model_path, non_negative=True)
midasmodel.to(device)
midasmodel.eval()
mask_org = generatemask((3000, 3000))
def estimatemidas(img, msize):
# MiDas -v2 forward pass script adapted from https://github.com/intel-isl/MiDaS/tree/v2
transform = Compose(
[
Resize(
msize,
msize,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
img_input = transform({"image": img})["image"]
# Forward pass
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
prediction = midasmodel.forward(sample)
prediction = prediction.squeeze().cpu().numpy()
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
# Normalization
depth_min = prediction.min()
depth_max = prediction.max()
if depth_max - depth_min > np.finfo("float").eps:
prediction = (prediction - depth_min) / (depth_max - depth_min)
else:
prediction = 0
return prediction
# Generate a single-input depth estimation
def singleestimate(img, msize, net_type):
if msize > GPU_threshold:
print(" \t \t DEBUG| GPU THRESHOLD REACHED", msize, '--->', GPU_threshold)
msize = GPU_threshold
return estimatemidas(img, msize)
def doubleestimate(img, size1, size2, pix2pixsize, net_type):
# Generate the low resolution estimation
estimate1 = singleestimate(img, size1, net_type)
# Resize to the inference size of merge network.
estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Generate the high resolution estimation
estimate2 = singleestimate(img, size2, net_type)
# Resize to the inference size of merge network.
estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Inference on the merge model
pix2pixmodel.set_input(estimate1, estimate2)
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
torch.max(prediction_mapped) - torch.min(prediction_mapped))
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
return prediction_mapped
def adaptiveselection(integral_grad, patch_bound_list, gf, factor):
patchlist = {}
count = 0
height, width = integral_grad.shape
search_step = int(32 / factor)
# Go through all patches
for c in range(len(patch_bound_list)):
# Get patch
bbox = patch_bound_list[str(c)]['rect']
# Compute the amount of gradients present in the patch from the integral image.
cgf = getGF_fromintegral(integral_grad, bbox) / (bbox[2] * bbox[3])
# Check if patching is beneficial by comparing the gradient density of the patch to
# the gradient density of the whole image
if cgf >= gf:
bbox_test = bbox.copy()
patchlist[str(count)] = {}
# Enlarge each patch until the gradient density of the patch is equal
# to the whole image gradient density
while True:
bbox_test[0] = bbox_test[0] - int(search_step / 2)
bbox_test[1] = bbox_test[1] - int(search_step / 2)
bbox_test[2] = bbox_test[2] + search_step
bbox_test[3] = bbox_test[3] + search_step
# Check if we are still within the image
if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
or bbox_test[0] + bbox_test[2] >= width:
break
# Compare gradient density
cgf = getGF_fromintegral(integral_grad, bbox_test) / (bbox_test[2] * bbox_test[3])
if cgf < gf:
break
bbox = bbox_test.copy()
# Add patch to selected patches
patchlist[str(count)]['rect'] = bbox
patchlist[str(count)]['size'] = bbox[2]
count = count + 1
# Return selected patches
return patchlist
def generatepatchs(img, base_size, factor):
# Compute the gradients as a proxy of the contextual cues.
img_gray = rgb2gray(img)
whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) + \
np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
threshold = whole_grad[whole_grad > 0].mean()
whole_grad[whole_grad < threshold] = 0
# We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
gf = whole_grad.sum() / len(whole_grad.reshape(-1))
grad_integral_image = cv2.integral(whole_grad)
# Variables are selected such that the initial patch size would be the receptive field size
# and the stride is set to 1/3 of the receptive field size.
blsize = int(round(base_size / 2))
stride = int(round(blsize * 0.75))
# Get initial Grid
patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
# Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
# each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
print("Selecting patchs ...")
patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf, factor)
# Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
# patch
patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
return patchset
def generatedepth(img, type="Final"):
mask = mask_org.copy()
print(type)
if type == "Final" or type == "R20":
r_threshold_value = 0.2
elif type == "R0":
r_threshold_value = 0
else:
return np.zeros_like(img), "Please select on of the Model Types"
print(type,r_threshold_value)
img = (img / 255.0).astype("float32")
input_resolution = img.shape
# Find the best input resolution R-x. The resolution search described in section 5-double estimation of the
# main paper and section B of the supplementary material.
whole_image_optimal_size, patch_scale = calculateprocessingres(img, 384,
r_threshold_value, scale_threshold,
whole_size_threshold)
print('\t wholeImage being processed in :', whole_image_optimal_size)
# Generate the base estimate using the double estimation.
whole_estimate = doubleestimate(img, 384, whole_image_optimal_size, 1024, 0)
if type == "R0" or type == "R20":
result = cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]),
interpolation=cv2.INTER_CUBIC)
result = (result * 255).astype('uint8')
result_colored = cv2.applyColorMap(result, cv2.COLORMAP_INFERNO)
result_colored = cv2.cvtColor(result_colored, cv2.COLOR_RGB2BGR)
return result_colored, "Completed"
factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
print('Adjust factor is:', 1 / factor)
# Compute the target resolution.
if img.shape[0] > img.shape[1]:
a = 2 * whole_image_optimal_size
b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
else:
a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
b = 2 * whole_image_optimal_size
img = cv2.resize(img, (round(b / factor), round(a / factor)), interpolation=cv2.INTER_CUBIC)
print('Target resolution: ', img.shape)
# Extract selected patches for local refinement
base_size = 384 * 2
patchset = generatepatchs(img, base_size, factor)
# Computing a scale in case user prompted to generate the results as the same resolution of the input.
# Notice that our method output resolution is independent of the input resolution and this parameter will only
# enable a scaling operation during the local patch merge implementation to generate results with the same
# resolution as the input.
mergein_scale = input_resolution[0] / img.shape[0]
imageandpatchs = ImageandPatchs("", "temp.png", patchset, img, mergein_scale)
whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1] * mergein_scale),
round(img.shape[0] * mergein_scale)),
interpolation=cv2.INTER_CUBIC)
imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
print('\t Resulted depthmap res will be :', whole_estimate_resized.shape[:2])
print('patchs to process: ' + str(len(imageandpatchs)))
# Enumerate through all patches, generate their estimations and refining the base estimate.
for patch_ind in range(len(imageandpatchs)):
# Get patch information
patch = imageandpatchs[patch_ind] # patch object
patch_rgb = patch['patch_rgb'] # rgb patch
patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
rect = patch['rect'] # patch size and location
patch_id = patch['id'] # patch ID
org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
print('\t processing patch', patch_ind, '|', rect)
# We apply double estimation for patches. The high resolution value is fixed to twice the receptive
# field size of the network for patches to accelerate the process.
patch_estimation = doubleestimate(patch_rgb, 384, int(384*2),
1024, 0)
patch_estimation = cv2.resize(patch_estimation, (1024, 1024),
interpolation=cv2.INTER_CUBIC)
patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (1024, 1024),
interpolation=cv2.INTER_CUBIC)
# Merging the patch estimation into the base estimate using our merge network:
# We feed the patch estimation and the same region from the updated base estimate to the merge network
# to generate the target estimate for the corresponding region.
pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
# Run merging network
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped + 1) / 2
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
mapped = prediction_mapped
# We use a simple linear polynomial to make sure the result of the merge network would match the values of
# base estimate
p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
merged = cv2.resize(merged, (org_size[1], org_size[0]), interpolation=cv2.INTER_CUBIC)
# Get patch size and location
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
# To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
# and resize it to our needed size while merging the patches.
if mask.shape != org_size:
mask = cv2.resize(mask_org, (org_size[1], org_size[0]), interpolation=cv2.INTER_LINEAR)
tobemergedto = imageandpatchs.estimation_updated_image
# Update the whole estimation:
# We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
# blending at the boundaries of the patch region.
tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
imageandpatchs.set_updated_estimate(tobemergedto)
result = (imageandpatchs.estimation_updated_image * 255).astype('uint8')
result_colored = cv2.applyColorMap(result,cv2.COLORMAP_INFERNO)
result_colored = cv2.cvtColor(result_colored,cv2.COLOR_RGB2BGR)
return result_colored, "Completed"
title = "Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging"
description = "To use this demo, simply upload your image and click submit. Note that it might take a few minutes for the results to be generated."
article = "<p style='text-align: center'><a href='http://yaksoy.github.io/highresdepth/'> Project page</a> | <a href='https://github.com/compphoto/BoostingMonocularDepth'>Github Repo</a></p>"
gr.Interface(
generatedepth,
[gr.inputs.Image(type="numpy", label="Input")],
[gr.outputs.Image(type="numpy", label="Output"), gr.outputs.Textbox(label=":")],
title=title,
description=description,
article=article,
examples=[["inputs/sample1.png"],
["inputs/sample2.jpg"]]
).launch(debug=True,share=True)