forked from pyannote/pyannote-audio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
259 lines (212 loc) · 9.01 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# encoding: utf-8
# The MIT License (MIT)
# Copyright (c) 2019-2020 CNRS
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# AUTHORS
# Hervé BREDIN - http://herve.niderb.fr
import os
import pathlib
import typing
import functools
import shutil
import zipfile
import torch
import yaml
from pyannote.audio.features import Pretrained as _Pretrained
from pyannote.pipeline import Pipeline as _Pipeline
dependencies = ['pyannote.audio', 'torch']
_HUB_REPO = 'https://github.com/pyannote/pyannote-audio-hub'
_ZIP_URL = f'{_HUB_REPO}/raw/master/{{kind}}s/{{name}}.zip'
_PRETRAINED_URL = f'{_HUB_REPO}/raw/master/pretrained.yml'
# path where pre-trained models and pipelines are downloaded and cached
_HUB_DIR = pathlib.Path(os.environ.get("PYANNOTE_AUDIO_HUB",
"~/.pyannote/hub")).expanduser().resolve()
# download pretrained.yml if needed
_PRETRAINED_YML = _HUB_DIR / 'pretrained.yml'
if not _PRETRAINED_YML.exists():
msg = (
f'Downloading list of pretrained models and pipelines '
f'to "{_PRETRAINED_YML}".'
)
print(msg)
from pyannote.audio.utils.path import mkdir_p
mkdir_p(_PRETRAINED_YML.parent)
torch.hub.download_url_to_file(_PRETRAINED_URL,
_PRETRAINED_YML,
progress=True)
def _generic(name: str,
duration: float = None,
step: float = 0.25,
batch_size: int = 32,
device: typing.Optional[typing.Union[typing.Text, torch.device]] = None,
pipeline: typing.Optional[bool] = None,
force_reload: bool = False) -> typing.Union[_Pretrained, _Pipeline]:
"""Load pretrained model or pipeline
Parameters
----------
name : str
Name of pretrained model or pipeline
duration : float, optional
Override audio chunks duration.
Defaults to the one used during training.
step : float, optional
Ratio of audio chunk duration used for the internal sliding window.
Defaults to 0.25 (i.e. 75% overlap between two consecutive windows).
Reducing this value might lead to better results (at the expense of
slower processing).
batch_size : int, optional
Batch size used for inference. Defaults to 32.
device : torch.device, optional
Device used for inference.
pipeline : bool, optional
Wrap pretrained model in a (not fully optimized) pipeline.
force_reload : bool
Whether to discard the existing cache and force a fresh download.
Defaults to use existing cache.
Returns
-------
pretrained: `Pretrained` or `Pipeline`
Usage
-----
>>> sad_pipeline = torch.hub.load('pyannote/pyannote-audio', 'sad_ami')
>>> scores = model({'audio': '/path/to/audio.wav'})
"""
model_exists = name in _MODELS
pipeline_exists = name in _PIPELINES
if model_exists and pipeline_exists:
if pipeline is None:
msg = (
f'Both a pretrained model and a pretrained pipeline called '
f'"{name}" are available. Use option "pipeline=True" to '
f'load the pipeline, and "pipeline=False" to load the model.')
raise ValueError(msg)
if pipeline:
kind = 'pipeline'
zip_url = _ZIP_URL.format(kind=kind, name=name)
sha256 = _PIPELINES[name]
return_pipeline = True
else:
kind = 'model'
zip_url = _ZIP_URL.format(kind=kind, name=name)
sha256 = _MODELS[name]
return_pipeline = False
elif pipeline_exists:
if pipeline is None:
pipeline = True
if not pipeline:
msg = (
f'Could not find any pretrained "{name}" model. '
f'A pretrained "{name}" pipeline does exist. '
f'Did you mean "pipeline=True"?'
)
raise ValueError(msg)
kind = 'pipeline'
zip_url = _ZIP_URL.format(kind=kind, name=name)
sha256 = _PIPELINES[name]
return_pipeline = True
elif model_exists:
if pipeline is None:
pipeline = False
kind = 'model'
zip_url = _ZIP_URL.format(kind=kind, name=name)
sha256 = _MODELS[name]
return_pipeline = pipeline
if name.startswith('emb_') and return_pipeline:
msg = (
f'Pretrained model "{name}" has no associated pipeline. Use '
f'"pipeline=False" or remove "pipeline" option altogether.'
)
raise ValueError(msg)
else:
msg = (
f'Could not find any pretrained model nor pipeline called "{name}".'
)
raise ValueError(msg)
if sha256 is None:
msg = (
f'Pretrained {kind} "{name}" is not available yet but will be '
f'released shortly. Stay tuned...'
)
raise NotImplementedError(msg)
pretrained_dir = _HUB_DIR / f'{kind}s'
pretrained_subdir = pretrained_dir / f'{name}'
pretrained_zip = pretrained_dir / f'{name}.zip'
if not pretrained_subdir.exists() or force_reload:
if pretrained_subdir.exists():
shutil.rmtree(pretrained_subdir)
from pyannote.audio.utils.path import mkdir_p
mkdir_p(pretrained_zip.parent)
try:
msg = (
f'Downloading pretrained {kind} "{name}" to "{pretrained_zip}".'
)
print(msg)
torch.hub.download_url_to_file(zip_url,
pretrained_zip,
hash_prefix=sha256,
progress=True)
except RuntimeError as e:
shutil.rmtree(pretrained_subdir)
msg = (
f'Failed to download pretrained {kind} "{name}".'
f'Please try again.')
raise RuntimeError(msg)
# unzip downloaded file
with zipfile.ZipFile(pretrained_zip) as z:
z.extractall(path=pretrained_dir)
if kind == 'model':
params_yml, = pretrained_subdir.glob('*/*/*/*/params.yml')
pretrained = _Pretrained(validate_dir=params_yml.parent,
duration=duration,
step=step,
batch_size=batch_size,
device=device)
if return_pipeline:
if name.startswith('sad_'):
from pyannote.audio.pipeline.speech_activity_detection import SpeechActivityDetection
pipeline = SpeechActivityDetection(scores=pretrained)
elif name.startswith('scd_'):
from pyannote.audio.pipeline.speaker_change_detection import SpeakerChangeDetection
pipeline = SpeakerChangeDetection(scores=pretrained)
elif name.startswith('ovl_'):
from pyannote.audio.pipeline.overlap_detection import OverlapDetection
pipeline = OverlapDetection(scores=pretrained)
else:
# this should never happen
msg = (
f'Pretrained model "{name}" has no associated pipeline. Use '
f'"pipeline=False" or remove "pipeline" option altogether.'
)
raise ValueError(msg)
return pipeline.load_params(params_yml)
return pretrained
elif kind == 'pipeline':
from pyannote.audio.pipeline.utils import load_pretrained_pipeline
params_yml, *_ = pretrained_subdir.glob('*/*/params.yml')
return load_pretrained_pipeline(params_yml.parent)
with open(_PRETRAINED_YML, 'r') as fp:
_pretrained = yaml.load(fp, Loader=yaml.SafeLoader)
_MODELS = _pretrained['models']
for name in _MODELS:
locals()[name] = functools.partial(_generic, name)
_PIPELINES = _pretrained['pipelines']
for name in _PIPELINES:
locals()[name] = functools.partial(_generic, name)
_SHORTCUTS = _pretrained['shortcuts']
for shortcut, name in _SHORTCUTS.items():
locals()[shortcut] = locals()[name]