Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] Calibration: Fix crash on empty folds #5859

Merged
merged 2 commits into from
Feb 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Orange/widgets/evaluate/owcalibrationplot.py
Original file line number Diff line number Diff line change
Expand Up @@ -487,7 +487,7 @@ def commit(self):
if results is not None:
problems = [
msg for condition, msg in (
(len(results.folds) > 1,
(results.folds is not None and len(results.folds) > 1,
"each training data sample produces a different model"),
(results.models is None,
"test results do not contain stored models - try testing "
Expand Down
3 changes: 2 additions & 1 deletion Orange/widgets/evaluate/owpredictions.py
Original file line number Diff line number Diff line change
Expand Up @@ -687,7 +687,8 @@ def _commit_evaluation_results(self):
nanmask = numpy.isnan(self.data.get_column_view(self.class_var)[0])
data = self.data[~nanmask]
results = Results(data, store_data=True)
results.folds = None
results.folds = [...]
results.models = numpy.array([[p.predictor for p in self.predictors]])
results.row_indices = numpy.arange(len(data))
results.actual = data.Y.ravel()
results.predicted = numpy.vstack(
Expand Down
17 changes: 17 additions & 0 deletions Orange/widgets/evaluate/tests/test_owcalibrationplot.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import copy
import warnings
import unittest
from unittest.mock import Mock, patch

import numpy as np
Expand Down Expand Up @@ -637,3 +638,19 @@ def test_warn_nan_probabilities(self, *_):
self.assertTrue(widget.Warning.omitted_nan_prob_points.is_shown())
self._set_list_selection(widget.controls.selected_classifiers, [0, 2])
self.assertFalse(widget.Warning.omitted_folds.is_shown())

@patch("Orange.widgets.evaluate.owcalibrationplot.ThresholdClassifier")
@patch("Orange.widgets.evaluate.owcalibrationplot.CalibratedLearner")
def test_no_folds(self, *_):
"""Don't crash on malformed Results with folds=None"""
widget = self.widget

self.results.folds = None
self.send_signal(widget.Inputs.evaluation_results, self.results)
widget.selected_classifiers = [0]
widget.commit.now()
self.assertIsNotNone(self.get_output(widget.Outputs.calibrated_model))


if __name__ == "__main__":
unittest.main()
4 changes: 4 additions & 0 deletions Orange/widgets/evaluate/tests/test_owpredictions.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@

from Orange.base import Model
from Orange.classification import LogisticRegressionLearner, NaiveBayesLearner
from Orange.classification.majority import ConstantModel
from Orange.data.io import TabReader
from Orange.evaluation.scoring import TargetScore
from Orange.preprocess import Remove
Expand Down Expand Up @@ -507,6 +508,9 @@ def test_multi_inputs(self):
def check_evres(expected):
out = self.get_output(w.Outputs.evaluation_results)
self.assertSequenceEqual(out.learner_names, expected)
self.assertEqual(out.folds, [...])
self.assertEqual(out.models.shape, (1, len(out.learner_names)))
self.assertIsInstance(out.models[0, 0], ConstantModel)

check_evres(["P1", "P2", "P3"])

Expand Down