-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
425 lines (352 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training script"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import builtins
import json
import os
import pickle
import random
import time
import warnings
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.io import DataLoader
import backbone as models
from utils.aug_transforms import build_aug
from data_proc.image_dataset import ImageDataset
from data_proc.processing import Processing
from data_proc.sampler import Sampler
from dcq import DCQ
from utils.logger import get_logger
model_names = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='DCQ Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('save', metavar='DIR',
help='path to save logs and checkpoints')
parser.add_argument('--filelist', default=None, type=str,
help='file list used for training')
parser.add_argument('--dataprob', default='1', type=str,
help='dataset probability')
parser.add_argument('-a', '--arch', metavar='ARCH', default='iresnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: iresnet50)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--iter-per-epoch', default=11000, type=int)
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N',
help='mini-batch size (default: 128) in each GPU')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--lr', '--learning-rate', default=0.06, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[50, 80, 100], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
# Multi-GPU training related
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--distributed', action='store_true',
help='Use multi-processing distributed training')
# DCQ specific configs:
parser.add_argument('--feat-dim', default=512, type=int,
help='feature dimension (default: 512)')
parser.add_argument('--queue-size', default=8192, type=int,
help='queue size; number of negative keys (default: 8192)')
parser.add_argument('--dcq-momentum', default=0.999, type=float,
help='momentum of updating key encoder (default: 0.999)')
parser.add_argument('--scale', default=50, type=float,
help='Cosface loss scale (default: 50)')
parser.add_argument('--margin', default=0.3, type=float,
help='Cosface loss margin (default: 0.3)')
# options for data loading and augmentation
parser.add_argument('--sampling-base', default='image', type=str,
help='sampling based on category or image')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
def main():
args = parser.parse_args()
os.makedirs(args.save, exist_ok=True)
# save the configurations
t = time.localtime()
timestamp = time.strftime('%b-%d-%Y_%H%M', t)
with open(os.path.join(args.save, 'args-{}.txt'.format(timestamp)), 'w') as fh:
json.dump(args.__dict__, fh, indent=2)
print('Start at : {}'.format(timestamp))
# show non-default args
default_args = parser.parse_args([args.data, args.save])
for key in args.__dict__:
if args.__dict__[key] != default_args.__dict__[key]:
print('{}: {} | default ({})'.format(key, args.__dict__[key],
default_args.__dict__[key]))
if args.seed is not None:
random.seed(args.seed)
paddle.seed(args.seed)
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = len(paddle.get_cuda_rng_state())
print('ngpus per node is {}'.format(ngpus_per_node))
if args.distributed:
dist.spawn(main_worker, nprocs=ngpus_per_node,
args=(args.gpu, ngpus_per_node, args), started_port=6671)
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = dist.get_rank() # None
logger = get_logger(
'dcq', log_file='{}/workerlog.{}'.format(args.save, args.gpu),
level='info', rank=args.gpu)
# suppress printing if not master
if args.distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
logger.info("Use GPU: {} for training".format(args.gpu))
if args.distributed:
dist.init_parallel_env()
# create model
logger.info("=> creating model '{}'".format(args.arch))
if args.arch in models.__dict__.keys():
backbone = models.__dict__[args.arch]
else:
raise NotImplementedError
model = DCQ(
backbone,
args.feat_dim, args.queue_size, args.dcq_momentum, args.scale, args.margin,
)
if args.distributed:
model = paddle.DataParallel(model)
criterion = paddle.nn.loss.CrossEntropyLoss(reduction='mean')
optimizer = paddle.optimizer.Momentum(
learning_rate=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
parameters=model.parameters())
if args.resume:
if os.path.isfile(args.resume + '.pdparams'):
print("=> loading checkpoint '{}'".format(args.resume))
with open(args.resume + '.state.pickle', 'rb') as fin:
state = pickle.load(fin)
args.start_epoch = state['epoch']
state_dict = paddle.load(args.resume + '.pdparams')
print(model.set_state_dict(state_dict))
optimizer_state = paddle.load(args.resume + '.pdopt')
optimizer.set_state_dict(optimizer_state)
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, state['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
augmentation = build_aug(args)
if args.filelist is not None:
roots = args.data.split(';')
anno_files = args.filelist.split(';')
probs = args.dataprob.split(';')
assert len(roots) == len(anno_files)
assert len(probs) == len(anno_files)
datasets = []
for root, anno_file in zip(roots, anno_files):
datasets.append(ImageDataset(root=root, anno_file=anno_file))
probs = [float(v) for v in probs]
else:
raise NotImplementedError
data_processing = Processing(transform=augmentation)
train_dataset = Sampler(datasets, probs,
samples_per_epoch=args.iter_per_epoch * args.batch_size,
processing=data_processing,
k=2,
sampling_base=args.sampling_base)
if args.sampling_base == 'image':
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, args.batch_size, shuffle=True, drop_last=True)
train_loader = DataLoader(train_dataset, num_workers=1, batch_sampler=train_sampler)
else:
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=1,
drop_last=True)
print(f'{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}: DataLoader is ready.')
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, logger)
if args.gpu == 0 and epoch > args.schedule[0]:
# skip saving the queue
state_dict = {}
model_state_dict = model.state_dict()
for key in model_state_dict:
# we don't need to save the queue
if 'queue' not in key:
state_dict[key] = model_state_dict[key]
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': state_dict,
'optimizer': optimizer.state_dict(), },
filename='{}/face_checkpoint_{:04d}'.format(args.save, epoch))
def train(train_loader, model, criterion, optimizer, epoch, args, logger=None):
batch_time = MoveAverageMeter('Time', ':.3f')
data_time = MoveAverageMeter('Data', ':.3f')
losses = AverageMeter('Loss', ':.3f')
top1 = AverageMeter('Acc@1', ':3.2f')
top5 = AverageMeter('Acc@5', ':3.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
print(f'{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}: start training.')
for i, (image_q, image_k, set_id) in enumerate(train_loader):
if i >= args.iter_per_epoch:
break
images = [image_q, image_k]
# measure data loading time
_dt = time.time() - end
data_time.update(_dt)
# compute output
output, target = model(im_q=images[0], im_k=images[1], im_label=set_id)
_inft = time.time() - end
loss = criterion(output, target)
_losst = time.time() - end
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.numpy()[0], images[0].shape[0])
top1.update(acc1.numpy()[0], images[0].shape[0])
top5.update(acc5.numpy()[0], images[0].shape[0])
# compute gradient and do SGD step
loss.backward()
optimizer.step()
optimizer.clear_grad()
# measure elapsed time
_bt = time.time() - end
batch_time.update(_bt)
end = time.time()
if i % args.print_freq == 0:
progress.display(i, optimizer.get_lr(), logger=logger)
def save_checkpoint(state, filename='checkpoint'):
paddle.save(state['state_dict'], filename + '.pdparams')
del state['state_dict']
paddle.save(state['optimizer'], filename + '.pdopt')
del state['optimizer']
with open(filename + '.state.pickle', 'wb') as fout:
pickle.dump(state, fout)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class MoveAverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f', win=1000):
self.name = name
self.fmt = fmt
self.win = win
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.move_win = []
def update(self, val):
self.val = val
self.move_win.append(val)
if len(self.move_win) > self.win:
self.move_win.pop(0)
self.avg = np.mean(self.move_win)
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch, append_info=None, logger=None):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
if append_info is not None:
entries.append('LR {:.1e}'.format(append_info))
if logger is not None:
logger.info(' '.join(entries))
else:
print(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
# stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
optimizer.set_lr(lr)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
output = output.detach()
maxk = max(topk)
batch_size = target.shape[0]
_, pred = paddle.topk(output, maxk, 1, True, True)
pred = pred.t()
correct = pred.equal(paddle.reshape(target, (1, -1)).expand_as(pred)).astype('float32')
res = []
for k in topk:
correct_k = correct[:k].flatten().sum(0, keepdim=True)
res.append(correct_k * (100.0 / batch_size))
return res
if __name__ == '__main__':
main()