-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdcq.py
199 lines (153 loc) · 6.62 KB
/
dcq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Dynamic Class Queue (DCQ)
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Li_Dynamic_Class_Queue_for_Large_Scale_Face_Recognition_in_the_CVPR_2021_paper.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from paddle.nn.functional import normalize
__all__ = ['DCQ']
@paddle.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
"""
if paddle.distributed.get_world_size() < 2:
return tensor
tensors_gather = []
paddle.distributed.all_gather(tensors_gather, tensor)
output = paddle.concat(tensors_gather, axis=0)
return output
class DCQ(fluid.dygraph.Layer):
def __init__(self, base_encoder, dim=128, queue_size=65536,
momentum=0.999, scale=50, margin=0.3):
super(DCQ, self).__init__()
self.queue_size = queue_size
self.momentum = momentum
self.scale = scale
self.margin = margin
# create the encoders
# num_classes is the output fc dimension
self.encoder_q = base_encoder(num_classes=dim, name_prefix='q')
self.encoder_k = base_encoder(num_classes=dim, name_prefix='k')
for param_q, param_k in zip(self.encoder_q.parameters(include_sublayers=True),
self.encoder_k.parameters(include_sublayers=True)):
param_k.stop_gradient = True
param_q.set_value(param_k)
self.register_buffer("weight_queue", paddle.randn([dim, queue_size]))
self.weight_queue = normalize(self.weight_queue, axis=0)
self.register_buffer("label_queue", paddle.randn([1, queue_size]))
self.register_buffer("queue_ptr", paddle.zeros([1, ], dtype='int64'))
@paddle.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
paddle.assign(param_k * self.momentum + param_q * (1. - self.momentum), param_k)
param_k.stop_gradient = True
@paddle.no_grad()
def _dequeue_and_enqueue(self, keys, labels):
# gather keys before updating queue
keys = concat_all_gather(keys)
labels = concat_all_gather(labels)
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_size % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.weight_queue[:, ptr:ptr + batch_size] = keys.transpose([1, 0])
self.label_queue[:, ptr:ptr + batch_size] = labels.transpose([1, 0])
ptr = (ptr + batch_size) % self.queue_size # move pointer
self.queue_ptr[0] = ptr
@paddle.no_grad()
def _batch_shuffle_ddp(self, x):
"""
Batch shuffle, for making use of BatchNorm.
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
idx_shuffle = paddle.randperm(batch_size_all)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.broadcast(idx_shuffle, src=0)
# index for restoring
idx_unshuffle = paddle.argsort(idx_shuffle)
# shuffled index for this gpu
gpu_idx = paddle.distributed.get_rank()
idx_this = idx_shuffle.reshape([num_gpus, -1])[gpu_idx]
x = paddle.gather(x_gather, idx_this, axis=0)
return x, idx_unshuffle
@paddle.no_grad()
def _batch_unshuffle_ddp(self, x, idx_unshuffle):
"""
Undo batch shuffle.
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# restored index for this gpu
gpu_idx = paddle.distributed.get_rank()
idx_this = idx_unshuffle.reshape([num_gpus, -1])[gpu_idx]
x = paddle.gather(x_gather, idx_this, axis=0)
return x
def forward(self, im_q, im_k=None, im_label=None, use_flip=False, is_train=True):
if not is_train:
q = self.encoder_k(im_q)
if use_flip:
im_q_flip = paddle.flip(im_q, axis=[3])
q_flip = self.encoder_k(im_q_flip)
q = q + q_flip # no need to divide by 2, which is achieved by normalize
q = paddle.nn.functional.normalize(q, axis=1)
return q
# compute query features
q = self.encoder_q(im_q) # queries: NxC
q = paddle.nn.functional.normalize(q, axis=1)
# compute key features
with paddle.no_grad():
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
k = self.encoder_k(im_k) # keys: NxC
k = paddle.nn.functional.normalize(k, axis=1)
# undo shuffle
k = self._batch_unshuffle_ddp(k, idx_unshuffle)
# compute logits
# positive logits: Nx1
l_pos = paddle.sum(q * k, axis=1).unsqueeze(-1)
l_pos = l_pos - self.margin # apply margin
# negative logits: NxK
t_w = self.weight_queue.clone()
t_w.stop_gradient = True
l_neg = paddle.matmul(q, t_w)
# mask out samples with the same label in the queue
label_diff = im_label - self.label_queue # N x 1 - 1 x K -> N x K
mask = (label_diff == 0).astype('float32')
l_neg = l_neg * (1 - mask) + (-1e9 * mask)
# logits: Nx(1+K)
logits = paddle.concat([l_pos, l_neg], axis=1)
# apply scale
logits *= self.scale
# labels: positive key indicators
labels = paddle.zeros([logits.shape[0], 1], dtype='int64')
# dequeue and enqueue
self._dequeue_and_enqueue(k, im_label)
return logits, labels