forked from toandaominh1997/EfficientDet.Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
179 lines (164 loc) · 7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import cv2
from PIL import Image
import matplotlib.pyplot as plt
from models import EfficientDet
from torchvision import transforms
import numpy as np
import skimage
from datasets import get_augumentation, VOC_CLASSES
from timeit import default_timer as timer
import argparse
import copy
from utils import vis_bbox, EFFICIENTDET
parser = argparse.ArgumentParser(description='EfficientDet')
parser.add_argument('-n', '--network', default='efficientdet-d0',
help='efficientdet-[d0, d1, ..]')
parser.add_argument('-s', '--score', default=True,
action="store_true", help='Show score')
parser.add_argument('-t', '--threshold', default=0.6,
type=float, help='Visualization threshold')
parser.add_argument('-it', '--iou_threshold', default=0.6,
type=float, help='Visualization threshold')
parser.add_argument('-w', '--weight', default='./weights/voc0712.pth',
type=str, help='Weight model path')
parser.add_argument('-c', '--cam',
action="store_true", help='Use camera')
parser.add_argument('-f', '--file_name', default='pic.jpg',
help='Image path')
parser.add_argument('--num_class', default=21, type=int,
help='Number of class used in model')
args = parser.parse_args()
class Detect(object):
"""
dir_name: Folder or image_file
"""
def __init__(self, weights, num_class=21, network='efficientdet-d0', size_image=(512, 512)):
super(Detect, self).__init__()
self.weights = weights
self.size_image = size_image
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else 'cpu')
self.transform = get_augumentation(phase='test')
if(self.weights is not None):
print('Load pretrained Model')
checkpoint = torch.load(
self.weights, map_location=lambda storage, loc: storage)
params = checkpoint['parser']
num_class = params.num_class
network = params.network
self.model = EfficientDet(num_classes=num_class,
network=network,
W_bifpn=EFFICIENTDET[network]['W_bifpn'],
D_bifpn=EFFICIENTDET[network]['D_bifpn'],
D_class=EFFICIENTDET[network]['D_class'],
is_training=False
)
if(self.weights is not None):
state_dict = checkpoint['state_dict']
self.model.load_state_dict(state_dict)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.model.eval()
def process(self, file_name=None, img=None, show=False):
if file_name is not None:
img = cv2.imread(file_name)
origin_img = copy.deepcopy(img)
augmentation = self.transform(image=img)
img = augmentation['image']
img = img.to(self.device)
img = img.unsqueeze(0)
with torch.no_grad():
scores, classification, transformed_anchors = self.model(img)
bboxes = list()
labels = list()
bbox_scores = list()
colors = list()
for j in range(scores.shape[0]):
bbox = transformed_anchors[[j], :][0].data.cpu().numpy()
x1 = int(bbox[0]*origin_img.shape[1]/self.size_image[1])
y1 = int(bbox[1]*origin_img.shape[0]/self.size_image[0])
x2 = int(bbox[2]*origin_img.shape[1]/self.size_image[1])
y2 = int(bbox[3]*origin_img.shape[0]/self.size_image[0])
bboxes.append([x1, y1, x2, y2])
label_name = VOC_CLASSES[int(classification[[j]])]
labels.append(label_name)
if(args.cam):
cv2.rectangle(origin_img, (x1, y1),
(x2, y2), (179, 255, 179), 2, 1)
if args.score:
score = np.around(
scores[[j]].cpu().numpy(), decimals=2) * 100
if(args.cam):
labelSize, baseLine = cv2.getTextSize('{} {}'.format(
label_name, int(score)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
cv2.rectangle(
origin_img, (x1, y1-labelSize[1]), (x1+labelSize[0], y1+baseLine), (223, 128, 255), cv2.FILLED)
cv2.putText(
origin_img, '{} {}'.format(label_name, int(score)),
(x1, y1), cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 0, 0), 2
)
bbox_scores.append(int(score))
else:
if(args.cam):
labelSize, baseLine = cv2.getTextSize('{}'.format(
label_name), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
cv2.rectangle(
origin_img, (x1, y1-labelSize[1]), (x1+labelSize[0], y1+baseLine), (0, 102, 255), cv2.FILLED)
cv2.putText(
origin_img, '{} {}'.format(label_name, int(score)),
(x1, y1), cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 0, 0), 2
)
if show:
fig, ax = vis_bbox(img=origin_img, bbox=bboxes,
label=labels, score=bbox_scores)
fig.savefig('./docs/demo.png')
plt.show()
else:
return origin_img
def camera(self):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Unable to open camera")
exit(-1)
count_tfps = 1
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
res, img = cap.read()
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = curr_fps
curr_fps = 0
if res:
show_image = self.process(img=img)
cv2.putText(
show_image, "FPS: " + str(fps), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (204, 51, 51), 2
)
cv2.imshow("Detection", show_image)
k = cv2.waitKey(1)
if k == 27:
break
else:
print("Unable to read image")
exit(-1)
count_tfps += 1
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
detect = Detect(weights=args.weight)
print('cam: ', args.cam)
if args.cam:
detect.camera()
else:
detect.process(file_name=args.file_name, show=True)