Skip to content

Latest commit

 

History

History
59 lines (38 loc) · 1.69 KB

readme.md

File metadata and controls

59 lines (38 loc) · 1.69 KB

Given an integer array nums, find the subarray with the largest sum, and return its sum.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: The subarray [4,-1,2,1] has the largest sum 6.

Example 2:

Input: nums = [1] Output: 1 Explanation: The subarray [1] has the largest sum 1.

Example 3:

Input: nums = [5,4,-1,7,8] Output: 23 Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Solution

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # Initialize current_max to the first element and global_max to a very small number
        current_max = global_max = nums[0]

        # Iterate over the array starting from the second element
        for num in nums[1:]:
            # Update current_max either by adding the current num or starting a new subarray with num
            current_max = max(num, current_max + num)
            # Update global_max to be the maximum value found so far
            global_max = max(global_max, current_max)

        return global_max

Thoughts

Remove when coming across negetive prefix in sliding window.

Time Complexity

O(n) - The algorithm iterates through the array exactly once, performing constant-time work for each element.

Space Complexity

O(1) - Only a fixed number of variables are used, regardless of the input size.