Given an integer array nums
, return the length of the longest strictly increasing subsequence.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3] Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7] Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n))
time complexity?
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
O(n^2): The time complexity is quadratic because, for each element nums[i], we potentially compare it with all previous elements nums[j] where j < i. This results in roughly 1/2 * n * (n-1)
comparisons in the worst case.
O(n): We need a dp array of size n to store the length of the LIS ending at each index.