Skip to content

Latest commit

 

History

History
64 lines (44 loc) · 2.13 KB

index.md

File metadata and controls

64 lines (44 loc) · 2.13 KB

Suppose an array of length n sorted in ascending order is rotated between 1 and n times. For example, the array nums = [0,1,2,4,5,6,7] might become:

  • [4,5,6,7,0,1,2] if it was rotated 4 times.
  • [0,1,2,4,5,6,7] if it was rotated 7 times.

Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]].

Given the sorted rotated array nums of unique elements, return the minimum element of this array.

You must write an algorithm that runs in O(log n) time.

Example 1:

Input: nums = [3,4,5,1,2] Output: 1 Explanation: The original array was [1,2,3,4,5] rotated 3 times.

Example 2:

Input: nums = [4,5,6,7,0,1,2] Output: 0 Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.

Example 3:

Input: nums = [11,13,15,17] Output: 11 Explanation: The original array was [11,13,15,17] and it was rotated 4 times.

Constraints

  • n == nums.length
  • 1 <= n <= 5000
  • -5000 <= nums[i] <= 5000
  • All the integers of nums are unique.
  • nums is sorted and rotated between 1 and n times.

Solution

class Solution:
    def findMin(self, nums: List[int]) -> int:
        left, right = 0, len(nums) - 1

        while left < right:
            mid = (left + right) // 2

            # If the middle element is greater than the rightmost element,
            # it means the minimum element is in the right half of the array
            if nums[mid] > nums[right]:
                left = mid + 1
            else:
                # Otherwise, the minimum element is in the left half of the array
                right = mid

        # At the end of the loop, left and right will converge to the index of the minimum element
        return nums[left]

Thoughts

The time complexity of this algorithm is O(log n), as it uses a binary search. The space complexity is O(1), as it only uses a constant amount of extra space.