Skip to content

Latest commit

 

History

History
108 lines (84 loc) · 3.49 KB

index.md

File metadata and controls

108 lines (84 loc) · 3.49 KB

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
  • int get(int key) Return the value of the key if the key exists, otherwise return -1.
  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4

Constraints:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10^4
  • 0 <= value <= 10^5
  • At most 2 * 10^5 calls will be made to get and put.

Solution

class ListNode:
    def __init__(self, key=0, value=0):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.capacity = capacity
        self.cache = {}  # map key to node
        self.head = ListNode()  # dummy head
        self.tail = ListNode()  # dummy tail
        self.head.next = self.tail
        self.tail.prev = self.head

    def _remove_node(self, node):
        prev = node.prev
        next = node.next
        prev.next = next
        next.prev = prev

    def _add_to_head(self, node):
        node.next = self.head.next
        node.prev = self.head
        self.head.next.prev = node
        self.head.next = node

    def _move_to_head(self, node):
        self._remove_node(node)
        self._add_to_head(node)

    def get(self, key: int) -> int:
        if key in self.cache:
            node = self.cache[key]
            self._move_to_head(node)
            return node.value
        return -1

    def put(self, key: int, value: int) -> None:
        if key in self.cache:
            node = self.cache[key]
            node.value = value
            self._move_to_head(node)
        else:
            node = ListNode(key, value)
            self.cache[key] = node
            self._add_to_head(node)
            if len(self.cache) > self.capacity:
                # Remove the least recently used (LRU) node
                lru = self.tail.prev
                self._remove_node(lru)
                del self.cache[lru.key]

Thoughts

Time Complexity

O(1) for both get and put operations. The hash map provides constant time lookup, and the doubly linked list allows for constant time updates to the usage order.

Space Complexity

O(capacity), as the cache size is limited by the capacity, and the hash map and doubly linked list will have at most capacity number of elements.