Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
- At most
2 * 10^5
calls will be made toget
andput
.
class ListNode:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {} # map key to node
self.head = ListNode() # dummy head
self.tail = ListNode() # dummy tail
self.head.next = self.tail
self.tail.prev = self.head
def _remove_node(self, node):
prev = node.prev
next = node.next
prev.next = next
next.prev = prev
def _add_to_head(self, node):
node.next = self.head.next
node.prev = self.head
self.head.next.prev = node
self.head.next = node
def _move_to_head(self, node):
self._remove_node(node)
self._add_to_head(node)
def get(self, key: int) -> int:
if key in self.cache:
node = self.cache[key]
self._move_to_head(node)
return node.value
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.value = value
self._move_to_head(node)
else:
node = ListNode(key, value)
self.cache[key] = node
self._add_to_head(node)
if len(self.cache) > self.capacity:
# Remove the least recently used (LRU) node
lru = self.tail.prev
self._remove_node(lru)
del self.cache[lru.key]
O(1) for both get and put operations. The hash map provides constant time lookup, and the doubly linked list allows for constant time updates to the usage order.
O(capacity), as the cache size is limited by the capacity, and the hash map and doubly linked list will have at most capacity number of elements.