-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_irr.py
74 lines (58 loc) · 1.79 KB
/
test_irr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pytest, random, math, numpy, time, functools
import irr
def run_many(case):
@functools.wraps(case)
def wrapped():
for test in range(1000):
d, r = case()
assert irr.irr(d) == pytest.approx(r)
return wrapped
@run_many
def test_simple_bond():
r = math.exp(random.gauss(0, 1)) - 1
x = random.gauss(0, 1)
d = [x / (1 + r), -x]
return d, r
@run_many
def test_slightly_longer_bond(n=10):
r = math.exp(random.gauss(0, 1)) - 1
x = random.gauss(0, 1)
d = [x] + [0.0] * (n-2) + [-x * (1+r)**(n-1)]
return d, r
@run_many
def test_more_nonzero(n=10):
r = math.exp(random.gauss(0, 1)) - 1
d = [random.random() for i in range(n-1)]
d.append(-sum([x * (1+r)**(n-i-1) for i, x in enumerate(d)]))
return d, r
def test_performance():
us_times = []
np_times = []
ns = [10, 20, 50, 100]
for n in ns:
k = 100
sums = [0.0, 0.0]
for j in range(k):
r = math.exp(random.gauss(0, 1.0 / n)) - 1
x = random.gauss(0, 1)
d = [x] + [0.0] * (n-2) + [-x * (1+r)**(n-1)]
results = []
for i, f in enumerate([irr.irr, numpy.irr]):
t0 = time.time()
results.append(f(d))
sums[i] += time.time() - t0
if not numpy.isnan(results[1]):
assert results[0] == pytest.approx(results[1])
for times, sum in zip([us_times, np_times], sums):
times.append(sum/k)
try:
from matplotlib import pyplot
import seaborn
except ImportError:
return
pyplot.plot(ns, us_times, label='Our library')
pyplot.plot(ns, np_times, label='Numpy')
pyplot.xlabel('n')
pyplot.ylabel('time(s)')
pyplot.yscale('log')
pyplot.savefig('plot.png')