diff --git a/VERSION b/VERSION index ee90284c..90a27f9c 100644 --- a/VERSION +++ b/VERSION @@ -1 +1 @@ -1.0.4 +1.0.5 diff --git a/docs/source/conf.py b/docs/source/conf.py index 5fc4a885..3010e5fc 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -23,7 +23,7 @@ author = 'Bernardo Ferreira' copyright = '2020, Bernardo Ferreira' version = '1.0' -release = '1.0.4' +release = '1.0.5' # -- General configuration ---------------------------------------------------- diff --git a/src/cratepy/clustering/clusteringdata.py b/src/cratepy/clustering/clusteringdata.py index d7504ab4..6b1a1d05 100644 --- a/src/cratepy/clustering/clusteringdata.py +++ b/src/cratepy/clustering/clusteringdata.py @@ -367,7 +367,7 @@ def def_gradient_from_log_strain(log_strain): """ # Perform spectral decomposition of material logarithmic strain tensor log_eigenvalues, log_eigenvectors, _, _ = \ - top.spectral_decomposition(log_strain) + top.spectral_decomposition(log_strain, is_real_if_close=True) # Compute deformation gradient eigenvalues dg_eigenvalues = np.exp(log_eigenvalues) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/src/cratepy/ioput/info.py b/src/cratepy/ioput/info.py index e4fd97c0..5fd2968c 100644 --- a/src/cratepy/ioput/info.py +++ b/src/cratepy/ioput/info.py @@ -93,7 +93,7 @@ def displayinfo(code, *args, **kwargs): elif code == '0': arguments = \ ['CRATE - Clustering-based Nonlinear Analysis of Materials', - 'Created by Bernardo P. Ferreira', 'Release 1.0.4 (Oct 2023)'] \ + 'Created by Bernardo P. Ferreira', 'Release 1.0.5 (Oct 2023)'] \ + 2*[args[0], ] + list(args[1:3]) info = tuple(arguments) template = '\n' + colorama.Fore.WHITE + tilde_line \ diff --git a/src/cratepy/tensor/tensoroperations.py b/src/cratepy/tensor/tensoroperations.py index 46fc8a63..e270cb2a 100644 --- a/src/cratepy/tensor/tensoroperations.py +++ b/src/cratepy/tensor/tensoroperations.py @@ -211,7 +211,7 @@ def get_id_operators(n_dim): # # Spectral decomposition # ============================================================================= -def spectral_decomposition(x): +def spectral_decomposition(x, is_real_if_close=False): """Perform spectral decomposition of symmetric second-order tensor. The computational implementation of the spectral decomposition follows the @@ -229,6 +229,10 @@ def spectral_decomposition(x): x : numpy.ndarray (2d) Second-order tensor (square array) whose eigenvalues and eigenvectors are computed. + is_real_if_close : bool, default=False + If True, then drop imaginary parts of eigenvalues and eigenvectors if + these are close to zero (tolerance with respect to machine epsilon for + input type) and convert to real type. Returns ------- @@ -254,6 +258,12 @@ def spectral_decomposition(x): # Perform spectral decomposition eigenvalues, eigenvectors = np.linalg.eig(x) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + # If imaginary parts are close to zero (tolerance with respect to machine + # epsilon for input type), then drop imaginary part and convert to real + if is_real_if_close: + eigenvalues = np.real_if_close(eigenvalues) + eigenvectors = np.real_if_close(eigenvectors) + # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Get eigenvalues sorted in descending order sort_idxs = np.argsort(eigenvalues)[::-1] # Sort eigenvalues in descending order and eigenvectors accordingly @@ -408,8 +418,8 @@ def isotropic_tensor(mode, x): raise RuntimeError('Unknown scalar function.') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Perform spectral decomposition - eigenvalues, eigenvectors, eig_multiplicity, eigenprojections = \ - spectral_decomposition(x) + eigenvalues, _, _, eigenprojections = \ + spectral_decomposition(x, is_real_if_close=True) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize isotropic symmetric tensor-valued function y = np.zeros(x.shape) @@ -467,8 +477,8 @@ def derivative_isotropic_tensor(mode, x): raise RuntimeError('Unknown scalar function.') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Perform spectral decomposition - eigenvalues, eigenvectors, eig_multiplicity, eigenprojections = \ - spectral_decomposition(x) + eigenvalues, _, eig_multiplicity, eigenprojections = \ + spectral_decomposition(x, is_real_if_close=True) # Compute number of distinct eigenvalues n_eig_distinct = n_dim - \ np.sum([1 for key, val in eig_multiplicity.items() if val == 0])