-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcp_eri_mme_interface.F
862 lines (731 loc) · 40.5 KB
/
cp_eri_mme_interface.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright (C) 2000 - 2020 CP2K developers group !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Interface to Minimax-Ewald method for periodic ERI's to be used in CP2K.
! **************************************************************************************************
MODULE cp_eri_mme_interface
USE basis_set_types, ONLY: gto_basis_set_type
USE cell_types, ONLY: cell_create,&
cell_release,&
cell_type,&
init_cell,&
pbc
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_type
USE cp_output_handling, ONLY: cp_print_key_finished_output,&
cp_print_key_section_create,&
cp_print_key_unit_nr,&
medium_print_level
USE cp_para_types, ONLY: cp_para_env_type
USE eri_mme_test, ONLY: eri_mme_2c_perf_acc_test,&
eri_mme_3c_perf_acc_test
USE eri_mme_types, ONLY: eri_mme_coulomb,&
eri_mme_init,&
eri_mme_longrange,&
eri_mme_param,&
eri_mme_print_grid_info,&
eri_mme_release,&
eri_mme_set_params,&
eri_mme_yukawa
USE input_keyword_types, ONLY: keyword_create,&
keyword_release,&
keyword_type
USE input_section_types, ONLY: section_add_keyword,&
section_add_subsection,&
section_create,&
section_release,&
section_type,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE input_val_types, ONLY: real_t
USE kinds, ONLY: default_string_length,&
dp
USE message_passing, ONLY: mp_sum
USE orbital_pointers, ONLY: init_orbital_pointers
USE qs_kind_types, ONLY: get_qs_kind,&
qs_kind_type
USE string_utilities, ONLY: s2a
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
LOGICAL, PRIVATE, PARAMETER :: debug_this_module = .FALSE.
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_eri_mme_interface'
PUBLIC :: &
cp_eri_mme_finalize, &
cp_eri_mme_init_read_input, &
cp_eri_mme_param, &
cp_eri_mme_perf_acc_test, &
cp_eri_mme_set_params, &
cp_eri_mme_update_local_counts, &
create_eri_mme_section, &
create_eri_mme_test_section
INTERFACE cp_eri_mme_set_params
MODULE PROCEDURE eri_mme_set_params_from_basis
MODULE PROCEDURE eri_mme_set_params_custom
END INTERFACE
TYPE cp_eri_mme_param
TYPE(cp_logger_type), POINTER :: logger
TYPE(eri_mme_param) :: par
TYPE(section_vals_type), &
POINTER :: mme_section => NULL()
INTEGER :: G_count_2c, R_count_2c
INTEGER :: GG_count_3c, GR_count_3c, RR_count_3c
LOGICAL :: do_calib
END TYPE cp_eri_mme_param
CONTAINS
! **************************************************************************************************
!> \brief Create main input section
!> \param section ...
!> \param default_n_minimax ...
! **************************************************************************************************
SUBROUTINE create_eri_mme_section(section, default_n_minimax)
TYPE(section_type), POINTER :: section
INTEGER, INTENT(IN), OPTIONAL :: default_n_minimax
CHARACTER(len=*), PARAMETER :: routineN = 'create_eri_mme_section', &
routineP = moduleN//':'//routineN
INTEGER :: my_default_n_minimax
TYPE(keyword_type), POINTER :: keyword
TYPE(section_type), POINTER :: print_key, subsection
NULLIFY (keyword, print_key, subsection)
CPASSERT(.NOT. ASSOCIATED(section))
IF (PRESENT(default_n_minimax)) THEN
my_default_n_minimax = default_n_minimax
ELSE
my_default_n_minimax = 20
ENDIF
CALL section_create(section, __LOCATION__, name="ERI_MME", &
description="Parameters for the calculation of periodic electron repulsion "// &
"integrals (ERI) using the Minimax-Ewald (MME) method. "// &
"Note: N_MINIMAX is the only parameter to be tuned for accuracy, "// &
"all other parameters can be left to default. MME method is faster "// &
"than numerical GPW.", &
n_keywords=5, n_subsections=1)
CALL keyword_create(keyword, __LOCATION__, &
name="N_MINIMAX", &
description="Number of terms in minimax approximation of "// &
"reciprocal space potential. ", &
default_i_val=my_default_n_minimax)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="CUTOFF", &
description="User-defined energy cutoff to be used only if "// &
"DO_CALIBRATE_CUTOFF is set to .FALSE. ", &
default_r_val=300.0_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="SUM_PRECISION", &
description="Terms in lattice sums are ignored if absolute value smaller than this value.", &
default_r_val=1.0E-16_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DO_CALIBRATE_CUTOFF", &
description="Whether the energy cutoff shall be calibrated to "// &
"minimize upper bound error estimate. ", &
default_l_val=.TRUE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DO_ERROR_ESTIMATE", &
description="Whether the error due to minimax approx. and cutoff shall be estimated", &
default_l_val=.TRUE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL cp_print_key_section_create(print_key, __LOCATION__, "ERI_MME_INFO", &
description="Controls the printing info.", &
print_level=medium_print_level, filename="__STD_OUT__")
CALL section_add_subsection(section, print_key)
CALL section_release(print_key)
CALL keyword_create(keyword, __LOCATION__, &
name="PRINT_CALIB", &
description="Print detailed info on calibration. ", &
default_l_val=.FALSE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DEBUG", &
description="debug mode (consistency of summation methods is checked).", &
default_l_val=.FALSE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DEBUG_TOLERANCE", &
description="tolerance for rel. numerical error in debug mode.", &
default_r_val=1.0E-06_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DEBUG_NSUM_MAX", &
description="restrict debug mode for non-ortho cells to this number of summands. "// &
"Sums with more terms are not checked.", &
default_i_val=1000000)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL section_create(subsection, __LOCATION__, name="CUTOFF_CALIB", &
description="Parameters for the calibration of the energy cutoff by "// &
"minimizing the errors due to finite cutoff and minimax approximation. "// &
"Implemented as bisection of error(minimax) - error(cutoff). Not "// &
"implemented for non-orthorhombic cells. ", &
n_keywords=5, n_subsections=0)
CALL keyword_create(keyword, __LOCATION__, &
name="MIN", &
description="Initial guess of lower bound for cutoff. ", &
default_r_val=10.0_dp)
CALL section_add_keyword(subsection, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="MAX", &
description="Initial guess of upper bound for cutoff. ", &
default_r_val=10000.0_dp)
CALL section_add_keyword(subsection, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="DELTA", &
description="Relative widening of cutoff interval in case starting "// &
"values are not valid. ", &
default_r_val=0.9_dp)
CALL section_add_keyword(subsection, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, &
name="EPS", &
description="Relative cutoff precision required to stop calibration. ", &
default_r_val=0.01_dp)
CALL section_add_keyword(subsection, keyword)
CALL keyword_release(keyword)
CALL section_add_subsection(section, subsection)
CALL section_release(subsection)
END SUBROUTINE create_eri_mme_section
! **************************************************************************************************
!> \brief Read input and initialize parameter type
!> \param mme_section ...
!> \param param ...
! **************************************************************************************************
SUBROUTINE cp_eri_mme_init_read_input(mme_section, param)
TYPE(section_vals_type), POINTER :: mme_section
TYPE(cp_eri_mme_param), INTENT(INOUT) :: param
CHARACTER(len=*), PARAMETER :: routineN = 'cp_eri_mme_init_read_input', &
routineP = moduleN//':'//routineN
INTEGER :: debug_nsum, n_minimax, unit_nr
LOGICAL :: debug, do_calib_cutoff, do_error_est, &
print_calib
REAL(KIND=dp) :: cutoff, cutoff_delta, cutoff_eps, &
cutoff_max, cutoff_min, debug_delta, &
sum_precision
TYPE(cp_logger_type), POINTER :: logger
TYPE(section_vals_type), POINTER :: subsection
logger => cp_get_default_logger()
unit_nr = cp_print_key_unit_nr(logger, mme_section, "ERI_MME_INFO", &
extension=".eri_mme")
NULLIFY (subsection)
CALL section_vals_val_get(mme_section, "N_MINIMAX", i_val=n_minimax)
CALL section_vals_val_get(mme_section, "CUTOFF", r_val=cutoff)
CALL section_vals_val_get(mme_section, "SUM_PRECISION", r_val=sum_precision)
CALL section_vals_val_get(mme_section, "DO_CALIBRATE_CUTOFF", l_val=do_calib_cutoff)
CALL section_vals_val_get(mme_section, "DO_ERROR_ESTIMATE", l_val=do_error_est)
CALL section_vals_val_get(mme_section, "PRINT_CALIB", l_val=print_calib)
subsection => section_vals_get_subs_vals(mme_section, "CUTOFF_CALIB")
CALL section_vals_val_get(subsection, "MIN", r_val=cutoff_min)
CALL section_vals_val_get(subsection, "MAX", r_val=cutoff_max)
CALL section_vals_val_get(subsection, "EPS", r_val=cutoff_eps)
CALL section_vals_val_get(subsection, "DELTA", r_val=cutoff_delta)
CALL section_vals_val_get(mme_section, "DEBUG", l_val=debug)
CALL section_vals_val_get(mme_section, "DEBUG_TOLERANCE", r_val=debug_delta)
CALL section_vals_val_get(mme_section, "DEBUG_NSUM_MAX", i_val=debug_nsum)
param%mme_section => mme_section
CALL eri_mme_init(param%par, n_minimax, &
cutoff, do_calib_cutoff, do_error_est, cutoff_min, cutoff_max, cutoff_eps, cutoff_delta, &
sum_precision, debug, debug_delta, debug_nsum, unit_nr, print_calib)
param%do_calib = do_calib_cutoff
param%G_count_2c = 0
param%R_count_2c = 0
param%GG_count_3c = 0
param%GR_count_3c = 0
param%RR_count_3c = 0
param%logger => logger
END SUBROUTINE cp_eri_mme_init_read_input
! **************************************************************************************************
!> \brief Release eri mme data. Prints some statistics on summation methods chosen.
!> \param param ...
! **************************************************************************************************
SUBROUTINE cp_eri_mme_finalize(param)
TYPE(cp_eri_mme_param), INTENT(INOUT) :: param
CHARACTER(LEN=*), PARAMETER :: routineN = 'cp_eri_mme_finalize', &
routineP = moduleN//':'//routineN
INTEGER :: count_2c, count_3c, unit_nr
count_2c = param%G_count_2c + param%R_count_2c
count_3c = param%GG_count_3c + param%GR_count_3c + param%RR_count_3c
unit_nr = param%par%unit_nr
IF (unit_nr > 0) THEN
IF (count_2c .GT. 0) THEN
WRITE (unit_nr, '(/T2, A)') "ERI_MME| Percentage of 2-center integrals evaluated in"
WRITE (unit_nr, '(T2, A, T76, F5.1)') "ERI_MME| G space:", &
100.0_dp*param%G_count_2c/count_2c
WRITE (unit_nr, '(T2, A, T76, F5.1/)') "ERI_MME| R space:", &
100.0_dp*param%R_count_2c/count_2c
ENDIF
IF (count_3c .GT. 0) THEN
WRITE (unit_nr, '(/T2, A)') "ERI_MME| Percentage of 3-center integrals evaluated in"
WRITE (unit_nr, '(T2, A, T76, F5.1)') "ERI_MME| G/G space:", &
100.0_dp*param%GG_count_3c/count_3c
WRITE (unit_nr, '(T2, A, T76, F5.1)') "ERI_MME| G/R space:", &
100.0_dp*param%GR_count_3c/count_3c
WRITE (unit_nr, '(T2, A, T76, F5.1/)') "ERI_MME| R/R space:", &
100.0_dp*param%RR_count_3c/count_3c
ENDIF
ENDIF
CALL eri_mme_release(param%par)
CALL cp_print_key_finished_output(unit_nr, param%logger, param%mme_section, "ERI_MME_INFO")
END SUBROUTINE cp_eri_mme_finalize
! **************************************************************************************************
!> \brief Set parameters for MME method by deriving basis info from basis set.
!> Cutoff can be auto-calibrated to minimize total error.
!> \param param ...
!> \param cell ...
!> \param qs_kind_set ...
!> \param basis_type_1 ...
!> \param basis_type_2 ...
!> \param para_env ...
!> \param potential ...
!> \param pot_par ...
! **************************************************************************************************
SUBROUTINE eri_mme_set_params_from_basis(param, cell, qs_kind_set, basis_type_1, basis_type_2, para_env, &
potential, pot_par)
TYPE(cp_eri_mme_param), INTENT(INOUT) :: param
TYPE(cell_type), INTENT(IN) :: cell
TYPE(qs_kind_type), DIMENSION(:), INTENT(IN), &
POINTER :: qs_kind_set
CHARACTER(len=*), INTENT(IN) :: basis_type_1
CHARACTER(len=*), INTENT(IN), OPTIONAL :: basis_type_2
TYPE(cp_para_env_type), INTENT(IN), POINTER :: para_env
INTEGER, INTENT(IN), OPTIONAL :: potential
REAL(KIND=dp), INTENT(IN), OPTIONAL :: pot_par
CHARACTER(LEN=*), PARAMETER :: routineN = 'eri_mme_set_params_from_basis', &
routineP = moduleN//':'//routineN
INTEGER :: handle, l_max, l_max_zet
REAL(KIND=dp) :: zet_max, zet_min
CALL timeset(routineN, handle)
CALL error_est_pgf_params_from_basis(qs_kind_set, basis_type_1, basis_type_2, &
zet_min, zet_max, l_max_zet, l_max)
CALL eri_mme_set_params_custom(param, cell%hmat, cell%orthorhombic, &
zet_min, zet_max, l_max_zet, &
l_max, para_env, &
potential, pot_par)
CALL timestop(handle)
END SUBROUTINE eri_mme_set_params_from_basis
! **************************************************************************************************
!> \brief Wrapper for eri_mme_set_params
!> \param param ...
!> \param hmat ...
!> \param is_ortho ...
!> \param zet_min ...
!> \param zet_max ...
!> \param l_max_zet ...
!> \param l_max ...
!> \param para_env ...
!> \param potential ...
!> \param pot_par ...
! **************************************************************************************************
SUBROUTINE eri_mme_set_params_custom(param, hmat, is_ortho, zet_min, zet_max, l_max_zet, l_max, para_env, &
potential, pot_par)
TYPE(cp_eri_mme_param), INTENT(INOUT) :: param
REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN) :: hmat
LOGICAL, INTENT(IN) :: is_ortho
REAL(KIND=dp), INTENT(IN) :: zet_min, zet_max
INTEGER, INTENT(IN) :: l_max_zet, l_max
TYPE(cp_para_env_type), INTENT(IN), POINTER :: para_env
INTEGER, INTENT(IN), OPTIONAL :: potential
REAL(KIND=dp), INTENT(IN), OPTIONAL :: pot_par
REAL(KIND=dp), PARAMETER :: eps_changed = 1.0E-14_dp
IF (param%do_calib) THEN
IF (.NOT. param%par%is_valid) THEN
param%par%do_calib_cutoff = .TRUE.
ELSE
! only calibrate cutoff if parameters (cell, basis coefficients) have changed
IF (ALL(ABS(param%par%hmat - hmat) < eps_changed) .AND. &
ABS(param%par%zet_min - zet_min) < eps_changed .AND. &
ABS(param%par%zet_max - zet_max) < eps_changed .AND. &
param%par%l_max_zet == l_max_zet) THEN
param%par%do_calib_cutoff = .FALSE.
ELSE
param%par%do_calib_cutoff = .TRUE.
ENDIF
ENDIF
ELSE
param%par%do_calib_cutoff = .FALSE.
ENDIF
CALL eri_mme_set_params(param%par, hmat, is_ortho, zet_min, zet_max, l_max_zet, l_max, para_env, &
potential, pot_par)
CALL eri_mme_print_info(param)
END SUBROUTINE eri_mme_set_params_custom
! **************************************************************************************************
!> \brief Get basis parameters for estimating cutoff and minimax error from cp2k basis
!> \param qs_kind_set ...
!> \param basis_type_1 ...
!> \param basis_type_2 ...
!> \param zet_min Smallest exponent, used to estimate error due to minimax approx.
!> \param zet_max contains max. exponent,
!> used to estimate cutoff error
!> \param l_max_zet contains the largest l for max. exponent,
!> used to estimate cutoff error
!> \param l_max ...
! **************************************************************************************************
SUBROUTINE error_est_pgf_params_from_basis(qs_kind_set, basis_type_1, basis_type_2, zet_min, zet_max, l_max_zet, l_max)
TYPE(qs_kind_type), DIMENSION(:), INTENT(IN), &
POINTER :: qs_kind_set
CHARACTER(len=*), INTENT(IN) :: basis_type_1
CHARACTER(len=*), INTENT(IN), OPTIONAL :: basis_type_2
REAL(KIND=dp), INTENT(OUT) :: zet_min, zet_max
INTEGER, INTENT(OUT) :: l_max_zet, l_max
CHARACTER(LEN=*), PARAMETER :: routineN = 'error_est_pgf_params_from_basis', &
routineP = moduleN//':'//routineN
CHARACTER(len=default_string_length) :: basis_type
INTEGER :: handle, ibasis, ikind, ipgf, iset, l_m, &
l_zet, nbasis, nkind, nset
INTEGER, DIMENSION(:), POINTER :: npgf
REAL(KIND=dp) :: zet_m
TYPE(gto_basis_set_type), POINTER :: basis_set
CALL timeset(routineN, handle)
l_m = 0
zet_m = 0.0_dp
l_zet = -1
zet_min = -1.0_dp
nkind = SIZE(qs_kind_set)
nbasis = MERGE(2, 1, PRESENT(basis_type_2))
! 1) get global max l and max zet
! (and min zet for minimax error)
DO ikind = 1, nkind
DO ibasis = 1, nbasis
IF (ibasis .EQ. 1) THEN
basis_type = basis_type_1
ELSE
basis_type = basis_type_2
ENDIF
CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set, &
basis_type=basis_type)
CPASSERT(ASSOCIATED(basis_set))
npgf => basis_set%npgf
nset = basis_set%nset
l_m = MAX(l_m, MAXVAL(basis_set%lmax(:)))
DO iset = 1, nset
zet_m = MAX(zet_m, MAXVAL(basis_set%zet(1:npgf(iset), iset)))
IF (zet_min .LT. 0.0_dp) THEN
zet_min = MINVAL(basis_set%zet(1:npgf(iset), iset))
ELSE
zet_min = MIN(zet_min, MINVAL(basis_set%zet(1:npgf(iset), iset)))
ENDIF
ENDDO
ENDDO
ENDDO
! 2) get largest zet for max l and largest l for max zet
DO ikind = 1, nkind
DO ibasis = 1, nbasis
IF (ibasis .EQ. 1) THEN
basis_type = basis_type_1
ELSE
basis_type = basis_type_2
ENDIF
CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set, &
basis_type=basis_type)
DO iset = 1, basis_set%nset
DO ipgf = 1, basis_set%npgf(iset)
IF (ABS(zet_m - basis_set%zet(ipgf, iset)) .LE. (zet_m*1.0E-12_dp) &
.AND. (basis_set%lmax(iset) .GT. l_zet)) THEN
l_zet = basis_set%lmax(iset)
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
CPASSERT(l_zet .GE. 0)
zet_max = zet_m
! l + 1 because we may calculate forces
! this is probably a safe choice also for the case that forces are not needed
l_max_zet = l_zet + 1
l_max = l_m + 1
CALL timestop(handle)
END SUBROUTINE error_est_pgf_params_from_basis
! **************************************************************************************************
!> \brief ...
!> \param param ...
! **************************************************************************************************
SUBROUTINE eri_mme_print_info(param)
TYPE(cp_eri_mme_param) :: param
INTEGER :: igrid, unit_nr
LOGICAL :: print_multigrids
TYPE(cp_logger_type), POINTER :: logger
print_multigrids = .FALSE.
logger => param%logger
unit_nr = param%par%unit_nr
IF (unit_nr > 0) THEN
SELECT CASE (param%par%potential)
CASE (eri_mme_coulomb)
WRITE (unit_nr, '(/T2, A)') "ERI_MME| Potential: Coulomb"
CASE (eri_mme_yukawa)
WRITE (unit_nr, '(/T2, A, ES9.2)') "ERI_MME| Potential: Yukawa with a=", param%par%pot_par
CASE (eri_mme_longrange)
WRITE (unit_nr, '(/T2, A, ES9.2)') "ERI_MME| Potential: long-range Coulomb with a=", param%par%pot_par
END SELECT
ENDIF
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(/T2, A, T71, F10.1)') "ERI_MME| Cutoff for ERIs [a.u.]:", param%par%cutoff
WRITE (unit_nr, '(/T2, A, T78, I3/)') "ERI_MME| Number of terms in minimax approximation:", param%par%n_minimax
ENDIF
IF (param%par%is_ortho) THEN
IF (unit_nr > 0) THEN
IF (param%par%do_error_est) THEN
WRITE (unit_nr, '(T2, A)') "ERI_MME| Estimated absolute error for normalized Hermite-Gaussian basis"
WRITE (unit_nr, '(T2, A, T72, ES9.2)') "ERI_MME| Minimax error:", param%par%err_mm
WRITE (unit_nr, '(T2, A, T72, ES9.2)') "ERI_MME| Cutoff error:", param%par%err_c
WRITE (unit_nr, '(T2, A, T72, ES9.2)') "ERI_MME| Total error (minimax + cutoff):", param%par%err_mm + param%par%err_c
ENDIF
IF (param%par%print_calib) &
WRITE (unit_nr, '(T2, A, T68, F13.10)') "ERI_MME| Minimax scaling constant in AM-GM estimate:", param%par%C_mm
ENDIF
ENDIF
IF (print_multigrids) THEN
DO igrid = 1, param%par%n_grids
CALL eri_mme_print_grid_info(param%par%minimax_grid(igrid), igrid, unit_nr)
ENDDO
ENDIF
IF (unit_nr > 0) WRITE (unit_nr, *)
END SUBROUTINE eri_mme_print_info
! **************************************************************************************************
!> \brief Create input section for unit testing
!> \param section ...
! **************************************************************************************************
SUBROUTINE create_eri_mme_test_section(section)
TYPE(section_type), INTENT(INOUT), POINTER :: section
CHARACTER(len=*), PARAMETER :: routineN = 'create_eri_mme_test_section', &
routineP = moduleN//':'//routineN
TYPE(keyword_type), POINTER :: keyword
TYPE(section_type), POINTER :: subsection
NULLIFY (keyword, subsection)
CPASSERT(.NOT. ASSOCIATED(section))
CALL section_create(section, __LOCATION__, name="ERI_MME_TEST", &
description="Parameters for testing the ERI_MME method for electron repulsion integrals. "// &
"Testing w.r.t. performance and accuracy. ", &
n_keywords=5, n_subsections=1)
CALL create_eri_mme_section(subsection)
CALL section_add_subsection(section, subsection)
CALL section_release(subsection)
CALL keyword_create(keyword, __LOCATION__, &
name="_SECTION_PARAMETERS_", &
description="Controls the activation the ERI_MME test. ", &
default_l_val=.FALSE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="TEST_3C", &
description="Whether to test 3-center integrals.", &
default_l_val=.TRUE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="TEST_2C", &
description="Whether to test 2-center integrals.", &
default_l_val=.TRUE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="ABC", &
description="Specify the lengths of the cell vectors A, B, and C. ", &
usage="ABC 10.000 10.000 10.000", unit_str="angstrom", &
n_var=3, type_of_var=real_t)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="MIN_NPOS", &
description="Minimum number of atomic distances to consider. ", &
default_i_val=8)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="NREP", &
description="Number of repeated calculation of each integral. ", &
default_i_val=1)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="CHECK_2C_ACCURACY", &
description="Whether integrals should be compared to reference values, "// &
"created on the fly by exact method (G-space sum on grid without "// &
"minimax approximation). Note: only feasible for not too many "// &
"integrals and maximum exponent around 10.0. ", &
default_l_val=.FALSE., &
lone_keyword_l_val=.TRUE.)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="LMAX", &
description="Maximum total angular momentum quantum number. ", &
default_i_val=6)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="ZET_MIN", &
description="Minimum exponent. ", &
default_r_val=0.001_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="ZET_MAX", &
description="Maximum exponent. ", &
default_r_val=1.0_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="NZET", &
description="Number of exponents (logarithmic partition between ZET_MIN and ZET_MAX). ", &
default_i_val=4)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="NSAMPLE_3C", &
description="If NSAMPLE_3C = N, only calculate every Nth 3-center integral.", &
default_i_val=1)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="POTENTIAL", &
description="Operator to test", &
default_i_val=eri_mme_coulomb, &
enum_i_vals=(/eri_mme_coulomb, eri_mme_yukawa, eri_mme_longrange/), &
enum_c_vals=s2a("COULOMB", "YUKAWA", "LONGRANGE"), &
enum_desc=s2a("1/r", "exp(-a*r)/r", "erf(a*r)/r"))
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
CALL keyword_create(keyword, __LOCATION__, name="POTENTIAL_PARAM", &
description="Parameter 'a' for chosen potential, ignored for Coulomb", &
default_r_val=0.0_dp)
CALL section_add_keyword(section, keyword)
CALL keyword_release(keyword)
END SUBROUTINE create_eri_mme_test_section
! **************************************************************************************************
!> \brief Update local counters to gather statistics on different paths taken in MME algorithm
!> (each Ewald sum can be performed over direct or reciprocal lattice vectors)
!> \param param ...
!> \param para_env ...
!> \param G_count_2c ...
!> \param R_count_2c ...
!> \param GG_count_3c ...
!> \param GR_count_3c ...
!> \param RR_count_3c ...
! **************************************************************************************************
SUBROUTINE cp_eri_mme_update_local_counts(param, para_env, G_count_2c, R_count_2c, GG_count_3c, GR_count_3c, RR_count_3c)
TYPE(cp_eri_mme_param), INTENT(INOUT) :: param
TYPE(cp_para_env_type), INTENT(IN), POINTER :: para_env
INTEGER, INTENT(INOUT), OPTIONAL :: G_count_2c, R_count_2c, GG_count_3c, &
GR_count_3c, RR_count_3c
IF (PRESENT(G_count_2c)) THEN
CALL mp_sum(G_count_2c, para_env%group)
param%G_count_2c = param%G_count_2c + G_count_2c
ENDIF
IF (PRESENT(R_count_2c)) THEN
CALL mp_sum(R_count_2c, para_env%group)
param%R_count_2c = param%R_count_2c + R_count_2c
ENDIF
IF (PRESENT(GG_count_3c)) THEN
CALL mp_sum(GG_count_3c, para_env%group)
param%GG_count_3c = param%GG_count_3c + GG_count_3c
ENDIF
IF (PRESENT(GR_count_3c)) THEN
CALL mp_sum(GR_count_3c, para_env%group)
param%GR_count_3c = param%GR_count_3c + GR_count_3c
ENDIF
IF (PRESENT(RR_count_3c)) THEN
CALL mp_sum(RR_count_3c, para_env%group)
param%RR_count_3c = param%RR_count_3c + RR_count_3c
ENDIF
END SUBROUTINE cp_eri_mme_update_local_counts
! **************************************************************************************************
!> \brief ...
!> \param para_env ...
!> \param iw ...
!> \param eri_mme_test_section ...
! **************************************************************************************************
SUBROUTINE cp_eri_mme_perf_acc_test(para_env, iw, eri_mme_test_section)
TYPE(cp_para_env_type), INTENT(IN), POINTER :: para_env
INTEGER, INTENT(IN) :: iw
TYPE(section_vals_type), POINTER :: eri_mme_test_section
CHARACTER(len=*), PARAMETER :: routineN = 'cp_eri_mme_perf_acc_test', &
routineP = moduleN//':'//routineN
INTEGER :: count_r, G_count, GG_count, GR_count, i, &
ix, iy, iz, l_max, min_nR, nR, nR_xyz, &
nrep, nsample, nzet, potential, &
R_count, RR_count
LOGICAL :: test_2c, test_3c, test_accuracy
REAL(KIND=dp) :: pot_par, zet_fac, zetmax, zetmin
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: zet
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: rabc
REAL(KIND=dp), DIMENSION(:), POINTER :: cell_par
TYPE(cell_type), POINTER :: box
TYPE(cp_eri_mme_param) :: param
TYPE(section_vals_type), POINTER :: eri_mme_section
NULLIFY (box, eri_mme_section, cell_par)
eri_mme_section => section_vals_get_subs_vals(eri_mme_test_section, "ERI_MME")
CALL cp_eri_mme_init_read_input(eri_mme_section, param)
CALL section_vals_val_get(eri_mme_test_section, "TEST_3C", l_val=test_3c)
CALL section_vals_val_get(eri_mme_test_section, "TEST_2C", l_val=test_2c)
CALL section_vals_val_get(eri_mme_test_section, "ABC", r_vals=cell_par)
CALL section_vals_val_get(eri_mme_test_section, "MIN_NPOS", i_val=min_nR)
CALL section_vals_val_get(eri_mme_test_section, "NREP", i_val=nrep)
CALL section_vals_val_get(eri_mme_test_section, "CHECK_2C_ACCURACY", l_val=test_accuracy)
CALL section_vals_val_get(eri_mme_test_section, "LMAX", i_val=l_max)
CALL section_vals_val_get(eri_mme_test_section, "ZET_MIN", r_val=zetmin)
CALL section_vals_val_get(eri_mme_test_section, "ZET_MAX", r_val=zetmax)
CALL section_vals_val_get(eri_mme_test_section, "NZET", i_val=nzet)
CALL section_vals_val_get(eri_mme_test_section, "NSAMPLE_3C", i_val=nsample)
CALL section_vals_val_get(eri_mme_test_section, "POTENTIAL", i_val=potential)
CALL section_vals_val_get(eri_mme_test_section, "POTENTIAL_PARAM", r_val=pot_par)
IF (nzet .LE. 0) &
CPABORT("Number of exponents NZET must be greater than 0.")
CALL init_orbital_pointers(l_max)
! Create ranges of zet to be tested
ALLOCATE (zet(nzet))
zet(1) = zetmin
IF (nzet .GT. 1) THEN
zet_fac = (zetmax/zetmin)**(1.0_dp/(nzet - 1))
DO i = 1, nzet - 1
zet(i + 1) = zet(i)*zet_fac
ENDDO
ENDIF
! initialize cell
CALL cell_create(box)
box%hmat = 0.0_dp
box%hmat(1, 1) = cell_par(1)
box%hmat(2, 2) = cell_par(2)
box%hmat(3, 3) = cell_par(3)
CALL init_cell(box)
! Create range of rab (atomic distances) to be tested
nR_xyz = CEILING(REAL(min_nR, KIND=dp)**(1.0_dp/3.0_dp) - 1.0E-06)
nR = nR_xyz**3
ALLOCATE (rabc(3, nR))
count_r = 0
DO ix = 1, nR_xyz
DO iy = 1, nR_xyz
DO iz = 1, nR_xyz
count_r = count_r + 1
! adding 10% of cell size to positions to avoid atoms exactly at boundary or center of a cell
rabc(:, count_r) = pbc([ix*ABS(cell_par(1)), &
iy*ABS(cell_par(2)), &
iz*ABS(cell_par(3))]/nR_xyz + &
0.1_dp*ABS(cell_par(:)), box)
ENDDO
ENDDO
ENDDO
! initialize MME method
CALL cp_eri_mme_set_params(param, box%hmat, box%orthorhombic, MINVAL(zet), MAXVAL(zet), l_max, l_max, para_env, &
potential, pot_par)
IF (iw > 0) WRITE (iw, '(T2, A, T61, I20)') "ERI_MME| Number of atomic distances:", nR
G_count = 0; R_count = 0
GG_count = 0; GR_count = 0; RR_count = 0
IF (test_2c) CALL eri_mme_2c_perf_acc_test(param%par, l_max, zet, rabc, nrep, test_accuracy, para_env, iw, &
potential=potential, pot_par=pot_par, G_count=G_count, R_count=R_count)
IF (test_3c) CALL eri_mme_3c_perf_acc_test(param%par, l_max, zet, rabc, nrep, nsample, &
para_env, iw, potential=potential, pot_par=pot_par, &
GG_count=GG_count, GR_count=GR_count, RR_count=RR_count)
CALL cp_eri_mme_update_local_counts(param, para_env, G_count, R_count, GG_count, GR_count, RR_count)
CALL cp_eri_mme_finalize(param)
CALL cell_release(box)
END SUBROUTINE cp_eri_mme_perf_acc_test
END MODULE cp_eri_mme_interface