-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathzs_priority.m
94 lines (85 loc) · 3.04 KB
/
zs_priority.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
%zone-specific priority
%replulsion = distance, parallel = side, attraction = front priority
R = zeros(1,4);
P = zeros(1,4);
A = zeros(1,4);
zs4 = zeros(1,4);
for i = 1:N
iR = 0;
iP = 0;
iA = 0;
iZS = 0;
%find indices (j values) of neighbors in each zone
for j = 1:N
if j ~= i && abs(dp.theta(i,j)) < (180 - w)...
&& d(i,j) < r1 && iR < 4
iR = iR + 1;
R(iR) = j;
end
if j ~= i && abs(dp.theta(i,j)) < (180 - w)...
&& d(i,j) >= r1 && d(i,j) < r2 && iP < 4
iP = iP + 1;
P(iP) = j;
end
if j ~= i && abs(dp.theta(i,j)) < (180 - w)...
&& d(i,j) >= r2 && d(i,j) < r3 && iA < 4
iA = iA + 1;
A(iA) = j;
end
end
%distance priority in repulsion zone
%actually, if neighbor j is in R zone, it will always get selected
%it would matter if we were weighting neighbors by distance...
if iR > 0
zs4(1:iR) = R(1:iR);
iZS = iR;
end
%apply side priority in parallel zone
min_i = 1; %index into sortedP that yields sidemost dp.theta
if iZS < 4 && iP > 0
sortedP = sort(abs(abs(dp.theta(i,P(1:iP))) - 90));
for k = 1:iP
for j = 1:iP
if iZS < 4 && abs(abs(dp.theta(i,P(j))) - 90) == sortedP(min_i)
iZS = iZS + 1;
zs4(iZS) = P(j);
%increment min index -> index of next sidemost angle
min_i = min_i + 1;
end
end
end
end
%apply front priority in attraction zone
min_i = 1; %index into sortedA that yields frontmost dp.theta
if iZS < 4 && iA > 0
sortedA = sort(abs(dp.theta(i,A(1:iA))));
for k = 1:iA
for j = 1:iA
if iZS < 4 && abs(dp.theta(i,A(j))) == sortedA(min_i)
iZS = iZS + 1;
zs4(iZS) = A(j);
%increment min index -> index of next frontmost dp.theta
min_i = min_i + 1;
end
end
end
end
%calculate resultant turning angle alpha
if iZS > 0 %at least 1 neighbor sensed
beta_avg = npi2pi(sum(beta(i,zs4(1:iZS)))/iZS);
%add randomness (normal distribution)
sigma = 15; %standard deviation = 15 degrees
alpha = beta_avg + sigma*randn(1);
%calculate velocity vector
v.theta(i) = npi2pi(v.theta(i) + alpha);
avg_mag = mean(v.mag(zs4(1:iZS)));
%add randomness (normal distribution)
sigma = .2; %standard deviation = .2 (need bio basis for this)
new_vmag(i) = avg_mag + sigma*randn(1);
else %no neighbors in sensory range -> searching
beta_avg = npi2pi(360*rand);
alpha = beta_avg; %no need to add normal dist.
v.theta(i) = npi2pi(v.theta(i) + alpha);
new_vmag(i) = gamrnd(4,1/3.3,1,1); %random on gamma if no neighbors
end
end