- Take the code from the previous video
- Train another model, register with MLflow
- Put the model into a scikit-learn pipeline
- Model deployment with tracking server
- Model deployment without the tracking server
Starting the MLflow server with S3:
mlflow server \
--backend-store-uri=sqlite:///mlflow.db \
--default-artifact-root=s3://mlflow-models-alexey/
Downloading the artifact
export MLFLOW_TRACKING_URI="http://127.0.0.1:5000"
export MODEL_RUN_ID="6dd459b11b4e48dc862f4e1019d166f6"
mlflow artifacts download \
--run-id ${MODEL_RUN_ID} \
--artifact-path model \
--dst-path .